-
Notifications
You must be signed in to change notification settings - Fork 121
/
gbq.py
1265 lines (1038 loc) · 39.2 KB
/
gbq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import logging
import os
import time
import warnings
from collections import OrderedDict
from datetime import datetime
import numpy as np
from pandas import DataFrame
from pandas_gbq.exceptions import AccessDenied
logger = logging.getLogger(__name__)
BIGQUERY_INSTALLED_VERSION = None
SHOW_VERBOSE_DEPRECATION = False
SHOW_PRIVATE_KEY_DEPRECATION = False
PRIVATE_KEY_DEPRECATION_MESSAGE = (
"private_key is deprecated and will be removed in a future version."
"Use the credentials argument instead. See "
"https://pandas-gbq.readthedocs.io/en/latest/howto/authentication.html "
"for examples on using the credentials argument with service account keys."
)
try:
import tqdm # noqa
except ImportError:
tqdm = None
def _check_google_client_version():
global BIGQUERY_INSTALLED_VERSION, SHOW_VERBOSE_DEPRECATION, SHOW_PRIVATE_KEY_DEPRECATION
try:
import pkg_resources
except ImportError:
raise ImportError("Could not import pkg_resources (setuptools).")
# https://github.com/GoogleCloudPlatform/google-cloud-python/blob/master/bigquery/CHANGELOG.md
bigquery_minimum_version = pkg_resources.parse_version("0.32.0")
BIGQUERY_INSTALLED_VERSION = pkg_resources.get_distribution(
"google-cloud-bigquery"
).parsed_version
if BIGQUERY_INSTALLED_VERSION < bigquery_minimum_version:
raise ImportError(
"pandas-gbq requires google-cloud-bigquery >= {0}, "
"current version {1}".format(
bigquery_minimum_version, BIGQUERY_INSTALLED_VERSION
)
)
# Add check for Pandas version before showing deprecation warning.
# https://github.com/pydata/pandas-gbq/issues/157
pandas_installed_version = pkg_resources.get_distribution(
"pandas"
).parsed_version
pandas_version_wo_verbosity = pkg_resources.parse_version("0.23.0")
SHOW_VERBOSE_DEPRECATION = (
pandas_installed_version >= pandas_version_wo_verbosity
)
pandas_version_with_credentials_arg = pkg_resources.parse_version("0.24.0")
SHOW_PRIVATE_KEY_DEPRECATION = (
pandas_installed_version >= pandas_version_with_credentials_arg
)
def _test_google_api_imports():
try:
from google_auth_oauthlib.flow import InstalledAppFlow # noqa
except ImportError as ex:
raise ImportError(
"pandas-gbq requires google-auth-oauthlib: {0}".format(ex)
)
try:
import google.auth # noqa
except ImportError as ex:
raise ImportError("pandas-gbq requires google-auth: {0}".format(ex))
try:
from google.cloud import bigquery # noqa
except ImportError as ex:
raise ImportError(
"pandas-gbq requires google-cloud-bigquery: {0}".format(ex)
)
_check_google_client_version()
class DatasetCreationError(ValueError):
"""
Raised when the create dataset method fails
"""
pass
class GenericGBQException(ValueError):
"""
Raised when an unrecognized Google API Error occurs.
"""
pass
class InvalidColumnOrder(ValueError):
"""
Raised when the provided column order for output
results DataFrame does not match the schema
returned by BigQuery.
"""
pass
class InvalidIndexColumn(ValueError):
"""
Raised when the provided index column for output
results DataFrame does not match the schema
returned by BigQuery.
"""
pass
class InvalidPageToken(ValueError):
"""
Raised when Google BigQuery fails to return,
or returns a duplicate page token.
"""
pass
class InvalidSchema(ValueError):
"""
Raised when the provided DataFrame does
not match the schema of the destination
table in BigQuery.
"""
pass
class NotFoundException(ValueError):
"""
Raised when the project_id, table or dataset provided in the query could
not be found.
"""
pass
class QueryTimeout(ValueError):
"""
Raised when the query request exceeds the timeoutMs value specified in the
BigQuery configuration.
"""
pass
class TableCreationError(ValueError):
"""
Raised when the create table method fails
"""
pass
class Context(object):
"""Storage for objects to be used throughout a session.
A Context object is initialized when the ``pandas_gbq`` module is
imported, and can be found at :attr:`pandas_gbq.context`.
"""
def __init__(self):
self._credentials = None
self._project = None
# dialect defaults to None so that read_gbq can stop warning if set.
self._dialect = None
@property
def credentials(self):
"""
Credentials to use for Google APIs.
These credentials are automatically cached in memory by calls to
:func:`pandas_gbq.read_gbq` and :func:`pandas_gbq.to_gbq`. To
manually set the credentials, construct an
:class:`google.auth.credentials.Credentials` object and set it as
the context credentials as demonstrated in the example below. See
`auth docs`_ for more information on obtaining credentials.
.. _auth docs: http://google-auth.readthedocs.io
/en/latest/user-guide.html#obtaining-credentials
Returns
-------
google.auth.credentials.Credentials
Examples
--------
Manually setting the context credentials:
>>> import pandas_gbq
>>> from google.oauth2 import service_account
>>> credentials = service_account.Credentials.from_service_account_file(
... '/path/to/key.json',
... )
>>> pandas_gbq.context.credentials = credentials
"""
return self._credentials
@credentials.setter
def credentials(self, value):
self._credentials = value
@property
def project(self):
"""Default project to use for calls to Google APIs.
Returns
-------
str
Examples
--------
Manually setting the context project:
>>> import pandas_gbq
>>> pandas_gbq.context.project = 'my-project'
"""
return self._project
@project.setter
def project(self, value):
self._project = value
@property
def dialect(self):
"""
Default dialect to use in :func:`pandas_gbq.read_gbq`.
Allowed values for the BigQuery SQL syntax dialect:
``'legacy'``
Use BigQuery's legacy SQL dialect. For more information see
`BigQuery Legacy SQL Reference
<https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__.
``'standard'``
Use BigQuery's standard SQL, which is
compliant with the SQL 2011 standard. For more information
see `BigQuery Standard SQL Reference
<https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__.
Returns
-------
str
Examples
--------
Setting the default syntax to standard:
>>> import pandas_gbq
>>> pandas_gbq.context.dialect = 'standard'
"""
return self._dialect
@dialect.setter
def dialect(self, value):
self._dialect = value
# Create an empty context, used to cache credentials.
context = Context()
"""A :class:`pandas_gbq.Context` object used to cache credentials.
Credentials automatically are cached in-memory by :func:`pandas_gbq.read_gbq`
and :func:`pandas_gbq.to_gbq`.
"""
class GbqConnector(object):
def __init__(
self,
project_id,
reauth=False,
private_key=None,
auth_local_webserver=False,
dialect="legacy",
location=None,
try_credentials=None,
credentials=None,
):
global context
from google.api_core.exceptions import GoogleAPIError
from google.api_core.exceptions import ClientError
from pandas_gbq import auth
self.http_error = (ClientError, GoogleAPIError)
self.project_id = project_id
self.location = location
self.reauth = reauth
self.private_key = private_key
self.auth_local_webserver = auth_local_webserver
self.dialect = dialect
self.credentials = credentials
self.credentials_path = _get_credentials_file()
default_project = None
# Load credentials from cache.
if not self.credentials:
self.credentials = context.credentials
default_project = context.project
# Credentials were explicitly asked for, so don't use the cache.
if private_key or reauth or not self.credentials:
self.credentials, default_project = auth.get_credentials(
private_key=private_key,
project_id=project_id,
reauth=reauth,
auth_local_webserver=auth_local_webserver,
try_credentials=try_credentials,
)
if self.project_id is None:
self.project_id = default_project
if self.project_id is None:
raise ValueError(
"Could not determine project ID and one was not supplied."
)
# Cache the credentials if they haven't been set yet.
if context.credentials is None:
context.credentials = self.credentials
if context.project is None:
context.project = self.project_id
self.client = self.get_client()
# BQ Queries costs $5 per TB. First 1 TB per month is free
# see here for more: https://cloud.google.com/bigquery/pricing
self.query_price_for_TB = 5.0 / 2 ** 40 # USD/TB
def _start_timer(self):
self.start = time.time()
def get_elapsed_seconds(self):
return round(time.time() - self.start, 2)
def log_elapsed_seconds(self, prefix="Elapsed", postfix="s.", overlong=6):
sec = self.get_elapsed_seconds()
if sec > overlong:
logger.info("{} {} {}".format(prefix, sec, postfix))
# http://stackoverflow.com/questions/1094841/reusable-library-to-get-human-readable-version-of-file-size
@staticmethod
def sizeof_fmt(num, suffix="B"):
fmt = "%3.1f %s%s"
for unit in ["", "K", "M", "G", "T", "P", "E", "Z"]:
if abs(num) < 1024.0:
return fmt % (num, unit, suffix)
num /= 1024.0
return fmt % (num, "Y", suffix)
def get_client(self):
from google.cloud import bigquery
return bigquery.Client(
project=self.project_id, credentials=self.credentials
)
@staticmethod
def process_http_error(ex):
# See `BigQuery Troubleshooting Errors
# <https://cloud.google.com/bigquery/troubleshooting-errors>`__
raise GenericGBQException("Reason: {0}".format(ex))
def run_query(self, query, **kwargs):
from concurrent.futures import TimeoutError
from google.auth.exceptions import RefreshError
from google.cloud import bigquery
job_config = {
"query": {
"useLegacySql": self.dialect
== "legacy"
# 'allowLargeResults', 'createDisposition',
# 'preserveNulls', destinationTable, useQueryCache
}
}
config = kwargs.get("configuration")
if config is not None:
job_config.update(config)
if "query" in config and "query" in config["query"]:
if query is not None:
raise ValueError(
"Query statement can't be specified "
"inside config while it is specified "
"as parameter"
)
query = config["query"].pop("query")
self._start_timer()
try:
logger.debug("Requesting query... ")
query_reply = self.client.query(
query,
job_config=bigquery.QueryJobConfig.from_api_repr(job_config),
location=self.location,
)
logger.debug("Query running...")
except (RefreshError, ValueError):
if self.private_key:
raise AccessDenied(
"The service account credentials are not valid"
)
else:
raise AccessDenied(
"The credentials have been revoked or expired, "
"please re-run the application to re-authorize"
)
except self.http_error as ex:
self.process_http_error(ex)
job_id = query_reply.job_id
logger.debug("Job ID: %s" % job_id)
while query_reply.state != "DONE":
self.log_elapsed_seconds(" Elapsed", "s. Waiting...")
timeout_ms = job_config["query"].get("timeoutMs")
if timeout_ms and timeout_ms < self.get_elapsed_seconds() * 1000:
raise QueryTimeout("Query timeout: {} ms".format(timeout_ms))
timeout_sec = 1.0
if timeout_ms:
# Wait at most 1 second so we can show progress bar
timeout_sec = min(1.0, timeout_ms / 1000.0)
try:
query_reply.result(timeout=timeout_sec)
except TimeoutError:
# Use our own timeout logic
pass
except self.http_error as ex:
self.process_http_error(ex)
if query_reply.cache_hit:
logger.debug("Query done.\nCache hit.\n")
else:
bytes_processed = query_reply.total_bytes_processed or 0
bytes_billed = query_reply.total_bytes_billed or 0
logger.debug(
"Query done.\nProcessed: {} Billed: {}".format(
self.sizeof_fmt(bytes_processed),
self.sizeof_fmt(bytes_billed),
)
)
logger.debug(
"Standard price: ${:,.2f} USD\n".format(
bytes_billed * self.query_price_for_TB
)
)
try:
rows_iter = query_reply.result()
except self.http_error as ex:
self.process_http_error(ex)
result_rows = list(rows_iter)
total_rows = rows_iter.total_rows
schema = {
"fields": [field.to_api_repr() for field in rows_iter.schema]
}
logger.debug("Got {} rows.\n".format(total_rows))
return schema, result_rows
def load_data(
self,
dataframe,
dataset_id,
table_id,
chunksize=None,
schema=None,
progress_bar=True,
):
from pandas_gbq import load
total_rows = len(dataframe)
try:
chunks = load.load_chunks(
self.client,
dataframe,
dataset_id,
table_id,
chunksize=chunksize,
schema=schema,
location=self.location,
)
if progress_bar and tqdm:
chunks = tqdm.tqdm(chunks)
for remaining_rows in chunks:
logger.info(
"\rLoad is {0}% Complete".format(
((total_rows - remaining_rows) * 100) / total_rows
)
)
except self.http_error as ex:
self.process_http_error(ex)
def schema(self, dataset_id, table_id):
"""Retrieve the schema of the table
Obtain from BigQuery the field names and field types
for the table defined by the parameters
Parameters
----------
dataset_id : str
Name of the BigQuery dataset for the table
table_id : str
Name of the BigQuery table
Returns
-------
list of dicts
Fields representing the schema
"""
table_ref = self.client.dataset(dataset_id).table(table_id)
try:
table = self.client.get_table(table_ref)
remote_schema = table.schema
remote_fields = [
field_remote.to_api_repr() for field_remote in remote_schema
]
for field in remote_fields:
field["type"] = field["type"].upper()
field["mode"] = field["mode"].upper()
return remote_fields
except self.http_error as ex:
self.process_http_error(ex)
def _clean_schema_fields(self, fields):
"""Return a sanitized version of the schema for comparisons."""
fields_sorted = sorted(fields, key=lambda field: field["name"])
# Ignore mode and description when comparing schemas.
return [
{"name": field["name"], "type": field["type"]}
for field in fields_sorted
]
def verify_schema(self, dataset_id, table_id, schema):
"""Indicate whether schemas match exactly
Compare the BigQuery table identified in the parameters with
the schema passed in and indicate whether all fields in the former
are present in the latter. Order is not considered.
Parameters
----------
dataset_id :str
Name of the BigQuery dataset for the table
table_id : str
Name of the BigQuery table
schema : list(dict)
Schema for comparison. Each item should have
a 'name' and a 'type'
Returns
-------
bool
Whether the schemas match
"""
fields_remote = self._clean_schema_fields(
self.schema(dataset_id, table_id)
)
fields_local = self._clean_schema_fields(schema["fields"])
return fields_remote == fields_local
def schema_is_subset(self, dataset_id, table_id, schema):
"""Indicate whether the schema to be uploaded is a subset
Compare the BigQuery table identified in the parameters with
the schema passed in and indicate whether a subset of the fields in
the former are present in the latter. Order is not considered.
Parameters
----------
dataset_id : str
Name of the BigQuery dataset for the table
table_id : str
Name of the BigQuery table
schema : list(dict)
Schema for comparison. Each item should have
a 'name' and a 'type'
Returns
-------
bool
Whether the passed schema is a subset
"""
fields_remote = self._clean_schema_fields(
self.schema(dataset_id, table_id)
)
fields_local = self._clean_schema_fields(schema["fields"])
return all(field in fields_remote for field in fields_local)
def delete_and_recreate_table(self, dataset_id, table_id, table_schema):
table = _Table(
self.project_id, dataset_id, credentials=self.credentials
)
table.delete(table_id)
table.create(table_id, table_schema)
def _get_credentials_file():
return os.environ.get("PANDAS_GBQ_CREDENTIALS_FILE")
def _parse_schema(schema_fields):
# see:
# http://pandas.pydata.org/pandas-docs/dev/missing_data.html
# #missing-data-casting-rules-and-indexing
dtype_map = {
"FLOAT": np.dtype(float),
"TIMESTAMP": "datetime64[ns]",
"TIME": "datetime64[ns]",
"DATE": "datetime64[ns]",
"DATETIME": "datetime64[ns]",
"BOOLEAN": bool,
"INTEGER": np.int64,
}
for field in schema_fields:
name = str(field["name"])
if field["mode"].upper() == "REPEATED":
yield name, object
else:
dtype = dtype_map.get(field["type"].upper())
yield name, dtype
def _parse_data(schema, rows):
column_dtypes = OrderedDict(_parse_schema(schema["fields"]))
df = DataFrame(data=(iter(r) for r in rows), columns=column_dtypes.keys())
for column in df:
dtype = column_dtypes[column]
null_safe = (
df[column].notnull().all()
or dtype == float
or dtype == "datetime64[ns]"
)
if dtype and null_safe:
df[column] = df[column].astype(
column_dtypes[column], errors="ignore"
)
return df
def read_gbq(
query,
project_id=None,
index_col=None,
col_order=None,
reauth=False,
auth_local_webserver=False,
dialect=None,
location=None,
configuration=None,
credentials=None,
verbose=None,
private_key=None,
):
r"""Load data from Google BigQuery using google-cloud-python
The main method a user calls to execute a Query in Google BigQuery
and read results into a pandas DataFrame.
This method uses the Google Cloud client library to make requests to
Google BigQuery, documented `here
<https://google-cloud-python.readthedocs.io/en/latest/bigquery/usage.html>`__.
See the :ref:`How to authenticate with Google BigQuery <authentication>`
guide for authentication instructions.
Parameters
----------
query : str
SQL-Like Query to return data values.
project_id : str, optional
Google BigQuery Account project ID. Optional when available from
the environment.
index_col : str, optional
Name of result column to use for index in results DataFrame.
col_order : list(str), optional
List of BigQuery column names in the desired order for results
DataFrame.
reauth : boolean, default False
Force Google BigQuery to re-authenticate the user. This is useful
if multiple accounts are used.
auth_local_webserver : boolean, default False
Use the `local webserver flow`_ instead of the `console flow`_
when getting user credentials.
.. _local webserver flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
.. _console flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
.. versionadded:: 0.2.0
dialect : str, default 'legacy'
Note: The default value is changing to 'standard' in a future verion.
SQL syntax dialect to use. Value can be one of:
``'legacy'``
Use BigQuery's legacy SQL dialect. For more information see
`BigQuery Legacy SQL Reference
<https://cloud.google.com/bigquery/docs/reference/legacy-sql>`__.
``'standard'``
Use BigQuery's standard SQL, which is
compliant with the SQL 2011 standard. For more information
see `BigQuery Standard SQL Reference
<https://cloud.google.com/bigquery/docs/reference/standard-sql/>`__.
location : str, optional
Location where the query job should run. See the `BigQuery locations
documentation
<https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
list of available locations. The location must match that of any
datasets used in the query.
.. versionadded:: 0.5.0
configuration : dict, optional
Query config parameters for job processing.
For example:
configuration = {'query': {'useQueryCache': False}}
For more information see `BigQuery REST API Reference
<https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs#configuration.query>`__.
credentials : google.auth.credentials.Credentials, optional
Credentials for accessing Google APIs. Use this parameter to override
default credentials, such as to use Compute Engine
:class:`google.auth.compute_engine.Credentials` or Service Account
:class:`google.oauth2.service_account.Credentials` directly.
.. versionadded:: 0.8.0
verbose : None, deprecated
Deprecated in Pandas-GBQ 0.4.0. Use the `logging module
to adjust verbosity instead
<https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__.
private_key : str, deprecated
Deprecated in pandas-gbq version 0.8.0. Use the ``credentials``
parameter and
:func:`google.oauth2.service_account.Credentials.from_service_account_info`
or
:func:`google.oauth2.service_account.Credentials.from_service_account_file`
instead.
Service account private key in JSON format. Can be file path
or string contents. This is useful for remote server
authentication (eg. Jupyter/IPython notebook on remote host).
Returns
-------
df: DataFrame
DataFrame representing results of query.
"""
global context
if dialect is None:
dialect = context.dialect
if dialect is None:
dialect = "legacy"
warnings.warn(
'The default value for dialect is changing to "standard" in a '
'future version. Pass in dialect="legacy" or set '
'pandas_gbq.context.dialect="legacy" to disable this warning.',
FutureWarning,
stacklevel=2,
)
_test_google_api_imports()
if verbose is not None and SHOW_VERBOSE_DEPRECATION:
warnings.warn(
"verbose is deprecated and will be removed in "
"a future version. Set logging level in order to vary "
"verbosity",
FutureWarning,
stacklevel=2,
)
if private_key is not None and SHOW_PRIVATE_KEY_DEPRECATION:
warnings.warn(
PRIVATE_KEY_DEPRECATION_MESSAGE, FutureWarning, stacklevel=2
)
if dialect not in ("legacy", "standard"):
raise ValueError("'{0}' is not valid for dialect".format(dialect))
connector = GbqConnector(
project_id,
reauth=reauth,
dialect=dialect,
auth_local_webserver=auth_local_webserver,
location=location,
credentials=credentials,
private_key=private_key,
)
schema, rows = connector.run_query(query, configuration=configuration)
final_df = _parse_data(schema, rows)
# Reindex the DataFrame on the provided column
if index_col is not None:
if index_col in final_df.columns:
final_df.set_index(index_col, inplace=True)
else:
raise InvalidIndexColumn(
'Index column "{0}" does not exist in DataFrame.'.format(
index_col
)
)
# Change the order of columns in the DataFrame based on provided list
if col_order is not None:
if sorted(col_order) == sorted(final_df.columns):
final_df = final_df[col_order]
else:
raise InvalidColumnOrder(
"Column order does not match this DataFrame."
)
connector.log_elapsed_seconds(
"Total time taken",
datetime.now().strftime("s.\nFinished at %Y-%m-%d %H:%M:%S."),
)
return final_df
def to_gbq(
dataframe,
destination_table,
project_id=None,
chunksize=None,
reauth=False,
if_exists="fail",
auth_local_webserver=False,
table_schema=None,
location=None,
progress_bar=True,
credentials=None,
verbose=None,
private_key=None,
):
"""Write a DataFrame to a Google BigQuery table.
The main method a user calls to export pandas DataFrame contents to
Google BigQuery table.
This method uses the Google Cloud client library to make requests to
Google BigQuery, documented `here
<https://google-cloud-python.readthedocs.io/en/latest/bigquery/usage.html>`__.
See the :ref:`How to authenticate with Google BigQuery <authentication>`
guide for authentication instructions.
Parameters
----------
dataframe : pandas.DataFrame
DataFrame to be written to a Google BigQuery table.
destination_table : str
Name of table to be written, in the form ``dataset.tablename``.
project_id : str, optional
Google BigQuery Account project ID. Optional when available from
the environment.
chunksize : int, optional
Number of rows to be inserted in each chunk from the dataframe.
Set to ``None`` to load the whole dataframe at once.
reauth : bool, default False
Force Google BigQuery to re-authenticate the user. This is useful
if multiple accounts are used.
if_exists : str, default 'fail'
Behavior when the destination table exists. Value can be one of:
``'fail'``
If table exists, do nothing.
``'replace'``
If table exists, drop it, recreate it, and insert data.
``'append'``
If table exists, insert data. Create if does not exist.
auth_local_webserver : bool, default False
Use the `local webserver flow`_ instead of the `console flow`_
when getting user credentials.
.. _local webserver flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_local_server
.. _console flow:
http://google-auth-oauthlib.readthedocs.io/en/latest/reference/google_auth_oauthlib.flow.html#google_auth_oauthlib.flow.InstalledAppFlow.run_console
.. versionadded:: 0.2.0
table_schema : list of dicts, optional
List of BigQuery table fields to which according DataFrame
columns conform to, e.g. ``[{'name': 'col1', 'type':
'STRING'},...]``.
If schema is not provided, it will be
generated according to dtypes of DataFrame columns.
If schema is provided, it must contain all DataFrame columns.
pandas_gbq.gbq._generate_bq_schema() may be used to create an initial
schema, though it doesn't preserve column order.
See BigQuery API documentation on available names of a field.
.. versionadded:: 0.3.1
location : str, optional
Location where the load job should run. See the `BigQuery locations
documentation
<https://cloud.google.com/bigquery/docs/dataset-locations>`__ for a
list of available locations. The location must match that of the
target dataset.
.. versionadded:: 0.5.0
progress_bar : bool, default True
Use the library `tqdm` to show the progress bar for the upload,
chunk by chunk.
.. versionadded:: 0.5.0
credentials : google.auth.credentials.Credentials, optional
Credentials for accessing Google APIs. Use this parameter to override
default credentials, such as to use Compute Engine
:class:`google.auth.compute_engine.Credentials` or Service Account
:class:`google.oauth2.service_account.Credentials` directly.
.. versionadded:: 0.8.0
verbose : bool, deprecated
Deprecated in Pandas-GBQ 0.4.0. Use the `logging module
to adjust verbosity instead
<https://pandas-gbq.readthedocs.io/en/latest/intro.html#logging>`__.
private_key : str, deprecated
Deprecated in pandas-gbq version 0.8.0. Use the ``credentials``
parameter and
:func:`google.oauth2.service_account.Credentials.from_service_account_info`
or
:func:`google.oauth2.service_account.Credentials.from_service_account_file`
instead.
Service account private key in JSON format. Can be file path
or string contents. This is useful for remote server
authentication (eg. Jupyter/IPython notebook on remote host).
"""
_test_google_api_imports()
if verbose is not None and SHOW_VERBOSE_DEPRECATION:
warnings.warn(
"verbose is deprecated and will be removed in "
"a future version. Set logging level in order to vary "
"verbosity",
FutureWarning,
stacklevel=1,
)
if private_key is not None and SHOW_PRIVATE_KEY_DEPRECATION:
warnings.warn(
PRIVATE_KEY_DEPRECATION_MESSAGE, FutureWarning, stacklevel=2
)
if if_exists not in ("fail", "replace", "append"):
raise ValueError("'{0}' is not valid for if_exists".format(if_exists))
if "." not in destination_table:
raise NotFoundException(
"Invalid Table Name. Should be of the form 'datasetId.tableId' "
)