This repository has been archived by the owner on Sep 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathCreateTrainingPipelineTabularClassificationSample.java
249 lines (218 loc) · 12.4 KB
/
CreateTrainingPipelineTabularClassificationSample.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package aiplatform;
// [START aiplatform_create_training_pipeline_tabular_classification_sample]
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTablesInputs.Transformation.AutoTransformation;
import com.google.rpc.Status;
import java.io.IOException;
import java.util.ArrayList;
public class CreateTrainingPipelineTabularClassificationSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String project = "YOUR_PROJECT_ID";
String modelDisplayName = "YOUR_DATASET_DISPLAY_NAME";
String datasetId = "YOUR_DATASET_ID";
String targetColumn = "TARGET_COLUMN";
createTrainingPipelineTableClassification(project, modelDisplayName, datasetId, targetColumn);
}
static void createTrainingPipelineTableClassification(
String project, String modelDisplayName, String datasetId, String targetColumn)
throws IOException {
PipelineServiceSettings pipelineServiceSettings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient pipelineServiceClient =
PipelineServiceClient.create(pipelineServiceSettings)) {
String location = "us-central1";
LocationName locationName = LocationName.of(project, location);
String trainingTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_tables_1.0.0.yaml";
// Set the columns used for training and their data types
Transformation transformation1 =
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("sepal_width").build())
.build();
Transformation transformation2 =
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("sepal_length").build())
.build();
Transformation transformation3 =
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("petal_length").build())
.build();
Transformation transformation4 =
Transformation.newBuilder()
.setAuto(AutoTransformation.newBuilder().setColumnName("petal_width").build())
.build();
ArrayList<Transformation> transformationArrayList = new ArrayList<>();
transformationArrayList.add(transformation1);
transformationArrayList.add(transformation2);
transformationArrayList.add(transformation3);
transformationArrayList.add(transformation4);
AutoMlTablesInputs autoMlTablesInputs =
AutoMlTablesInputs.newBuilder()
.setTargetColumn(targetColumn)
.setPredictionType("classification")
.addAllTransformations(transformationArrayList)
.setTrainBudgetMilliNodeHours(8000)
.build();
FractionSplit fractionSplit =
FractionSplit.newBuilder()
.setTrainingFraction(0.8)
.setValidationFraction(0.1)
.setTestFraction(0.1)
.build();
InputDataConfig inputDataConfig =
InputDataConfig.newBuilder()
.setDatasetId(datasetId)
.setFractionSplit(fractionSplit)
.build();
Model modelToUpload = Model.newBuilder().setDisplayName(modelDisplayName).build();
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(modelDisplayName)
.setTrainingTaskDefinition(trainingTaskDefinition)
.setTrainingTaskInputs(ValueConverter.toValue(autoMlTablesInputs))
.setInputDataConfig(inputDataConfig)
.setModelToUpload(modelToUpload)
.build();
TrainingPipeline trainingPipelineResponse =
pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);
System.out.println("Create Training Pipeline Tabular Classification Response");
System.out.format("\tName: %s\n", trainingPipelineResponse.getName());
System.out.format("\tDisplay Name: %s\n", trainingPipelineResponse.getDisplayName());
System.out.format(
"\tTraining Task Definition: %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
System.out.format(
"\tTraining Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
System.out.format(
"\tTraining Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
System.out.format("\tState: %s\n", trainingPipelineResponse.getState());
System.out.format("\tCreate Time: %s\n", trainingPipelineResponse.getCreateTime());
System.out.format("\tStart Time: %s\n", trainingPipelineResponse.getStartTime());
System.out.format("\tEnd Time: %s\n", trainingPipelineResponse.getEndTime());
System.out.format("\tUpdate Time: %s\n", trainingPipelineResponse.getUpdateTime());
System.out.format("\tLabels: %s\n", trainingPipelineResponse.getLabelsMap());
InputDataConfig inputDataConfigResponse = trainingPipelineResponse.getInputDataConfig();
System.out.println("\tInput Data Config");
System.out.format("\t\tDataset Id: %s\n", inputDataConfigResponse.getDatasetId());
System.out.format(
"\t\tAnnotations Filter: %s\n", inputDataConfigResponse.getAnnotationsFilter());
FractionSplit fractionSplitResponse = inputDataConfigResponse.getFractionSplit();
System.out.println("\t\tFraction Split");
System.out.format(
"\t\t\tTraining Fraction: %s\n", fractionSplitResponse.getTrainingFraction());
System.out.format(
"\t\t\tValidation Fraction: %s\n", fractionSplitResponse.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", fractionSplitResponse.getTestFraction());
FilterSplit filterSplit = inputDataConfigResponse.getFilterSplit();
System.out.println("\t\tFilter Split");
System.out.format("\t\t\tTraining Fraction: %s\n", filterSplit.getTrainingFilter());
System.out.format("\t\t\tValidation Fraction: %s\n", filterSplit.getValidationFilter());
System.out.format("\t\t\tTest Fraction: %s\n", filterSplit.getTestFilter());
PredefinedSplit predefinedSplit = inputDataConfigResponse.getPredefinedSplit();
System.out.println("\t\tPredefined Split");
System.out.format("\t\t\tKey: %s\n", predefinedSplit.getKey());
TimestampSplit timestampSplit = inputDataConfigResponse.getTimestampSplit();
System.out.println("\t\tTimestamp Split");
System.out.format("\t\t\tTraining Fraction: %s\n", timestampSplit.getTrainingFraction());
System.out.format("\t\t\tValidation Fraction: %s\n", timestampSplit.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", timestampSplit.getTestFraction());
System.out.format("\t\t\tKey: %s\n", timestampSplit.getKey());
Model modelResponse = trainingPipelineResponse.getModelToUpload();
System.out.println("\tModel To Upload");
System.out.format("\t\tName: %s\n", modelResponse.getName());
System.out.format("\t\tDisplay Name: %s\n", modelResponse.getDisplayName());
System.out.format("\t\tDescription: %s\n", modelResponse.getDescription());
System.out.format("\t\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
System.out.format("\t\tMeta Data: %s\n", modelResponse.getMetadata());
System.out.format("\t\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
System.out.format("\t\tArtifact Uri: %s\n", modelResponse.getArtifactUri());
System.out.format(
"\t\tSupported Deployment Resources Types: %s\n",
modelResponse.getSupportedDeploymentResourcesTypesList().toString());
System.out.format(
"\t\tSupported Input Storage Formats: %s\n",
modelResponse.getSupportedInputStorageFormatsList().toString());
System.out.format(
"\t\tSupported Output Storage Formats: %s\n",
modelResponse.getSupportedOutputStorageFormatsList().toString());
System.out.format("\t\tCreate Time: %s\n", modelResponse.getCreateTime());
System.out.format("\t\tUpdate Time: %s\n", modelResponse.getUpdateTime());
System.out.format("\t\tLables: %s\n", modelResponse.getLabelsMap());
PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
System.out.println("\tPredict Schemata");
System.out.format("\t\tInstance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
System.out.format(
"\t\tParameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
System.out.format(
"\t\tPrediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());
for (Model.ExportFormat supportedExportFormat :
modelResponse.getSupportedExportFormatsList()) {
System.out.println("\tSupported Export Format");
System.out.format("\t\tId: %s\n", supportedExportFormat.getId());
}
ModelContainerSpec containerSpec = modelResponse.getContainerSpec();
System.out.println("\tContainer Spec");
System.out.format("\t\tImage Uri: %s\n", containerSpec.getImageUri());
System.out.format("\t\tCommand: %s\n", containerSpec.getCommandList());
System.out.format("\t\tArgs: %s\n", containerSpec.getArgsList());
System.out.format("\t\tPredict Route: %s\n", containerSpec.getPredictRoute());
System.out.format("\t\tHealth Route: %s\n", containerSpec.getHealthRoute());
for (EnvVar envVar : containerSpec.getEnvList()) {
System.out.println("\t\tEnv");
System.out.format("\t\t\tName: %s\n", envVar.getName());
System.out.format("\t\t\tValue: %s\n", envVar.getValue());
}
for (Port port : containerSpec.getPortsList()) {
System.out.println("\t\tPort");
System.out.format("\t\t\tContainer Port: %s\n", port.getContainerPort());
}
for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
System.out.println("\tDeployed Model");
System.out.format("\t\tEndpoint: %s\n", deployedModelRef.getEndpoint());
System.out.format("\t\tDeployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}
Status status = trainingPipelineResponse.getError();
System.out.println("\tError");
System.out.format("\t\tCode: %s\n", status.getCode());
System.out.format("\t\tMessage: %s\n", status.getMessage());
}
}
}
// [END aiplatform_create_training_pipeline_tabular_classification_sample]