-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathevaluation.py
503 lines (407 loc) · 18.1 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation utilities for uniprot predictions."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import itertools
from typing import Dict, FrozenSet, List, Optional, Sequence, Set, Text, Tuple, Union
import numpy as np
import pandas as pd
from pandas.core.groupby.generic import DataFrameGroupBy as pd_DataFrameGroupBy
import inference
import parenthood_lib
import sklearn.metrics
import tqdm
FALSE_NEGATIVES_KEY = 'false_negatives'
FALSE_POSITIVES_KEY = 'false_positives'
TRUE_POSITIVES_KEY = 'true_positives'
PrecisionRecallF1 = Tuple[float, float, float]
def normalize_confidences(
predictions, label_vocab,
applicable_label_dict):
"""Set confidences of parent labels to the max of their children.
Args:
predictions: [num_sequences, num_labels] ndarray.
label_vocab: list of vocab strings in an order that corresponds to
`predictions`.
applicable_label_dict: Mapping from labels to their parents (including
indirect parents).
Returns:
A numpy array [num_sequences, num_labels] with confidences where:
if label_vocab[k] in applicable_label_dict[label_vocab[j]],
then arr[i, j] >= arr[i, k] for all i.
"""
vocab_indices = {v: i for i, v in enumerate(label_vocab)}
children = parenthood_lib.reverse_map(applicable_label_dict,
set(vocab_indices.keys()))
# Only vectorize this along the sequences dimension as the number of children
# varies between labels.
label_confidences = []
for label in label_vocab:
child_indices = np.array(
[vocab_indices[child] for child in children[label]])
if child_indices.size > 1:
confidences = np.max(predictions[:, child_indices], axis=1)
label_confidences.append(confidences)
else:
label_confidences.append(predictions[:, vocab_indices[label]])
return np.stack(label_confidences, axis=1)
def get_ground_truth_multihots(label_sets,
label_vocab):
"""Get a multihot matrix from label sets and a vocab."""
vocab_indices = {v: i for i, v in enumerate(label_vocab)}
ground_truths = []
for s in label_sets:
indices = np.array([vocab_indices[v] for v in s], dtype=np.int32)
multihots = np.zeros([len(label_vocab)])
multihots[indices] = 1
ground_truths.append(multihots)
return np.vstack(ground_truths)
def get_pr_f1_df_from_arrays(
ground_truths,
normalized_predictions,
prediction_precision_limit = None,
):
"""Convenience method for making a PR curve dataframe.
Args:
ground_truths: multihot array of shape (num_examples, num_labels).
normalized_predictions: array of shape (num_samples, num_labels).
prediction_precision_limit: Used to truncate the predictions to a fixed
level of precision. Predictions are truncated to
`prediction_precision_limit` number of decimal places. This argument is
useful to increase the speed of computation, and also to decrease the size
of the dataframe returned. If None, no truncation is performed.
Returns:
pd.DataFrame with columns precision (float); recall (float);
threshold (float); f1 (float).
"""
if prediction_precision_limit:
normalized_predictions = np.around(normalized_predictions,
prediction_precision_limit)
precisions, recalls, thresholds = sklearn.metrics.precision_recall_curve(
ground_truths.flatten(), normalized_predictions.flatten())
# Throw away last precision and recall as they are always 0 and 1
# respectively, and have no associated threshold
precisions = precisions[:-1]
recalls = recalls[:-1]
f1s = 2 * (precisions * recalls) / (precisions + recalls)
return pd.DataFrame(
data={
'precision': precisions,
'recall': recalls,
'threshold': thresholds,
'f1': f1s
})
def get_pr_f1_df(
prediction_df,
label_vocab,
label_normalizer,
eval_vocab = None,
prediction_precision_limit = 18,
):
"""Make a dataframe with each possible threshold and it's corresponding values.
Args:
prediction_df: A dataframe with columns `predictions` and `true_label`.
label_vocab: A list of labels.
label_normalizer: A mapping from labels to their children.
eval_vocab: An optional subset of `label_vocab` on which to restrict
analysis.
prediction_precision_limit: Used to truncate the predictions to a fixed
level of precision. Predictions are truncated to
`prediction_precision_limit` number of decimal places. This argument is
useful to increase the speed of computation, and also to decrease
the size of the dataframe returned. If None, no truncation is performed.
Returns:
A dataframe with 4 columns; precision, recall, f1, and threshold. At each
threshold precision, recall, and f1 are calculated relative to the
normalized confidences and true labels given in `prediction_df`.
"""
if not eval_vocab:
eval_vocab = set(label_vocab)
label_vocab = np.array(label_vocab)
prediction_array = np.vstack(prediction_df.predictions)
normalized_predictions = normalize_confidences(prediction_array, label_vocab,
label_normalizer)
true_label_sets = prediction_df.true_label.apply(
eval_vocab.intersection).values
eval_indices = np.array(
[i for i, v in enumerate(label_vocab) if v in eval_vocab])
ground_truths = get_ground_truth_multihots(true_label_sets,
label_vocab[eval_indices])
return get_pr_f1_df_from_arrays(ground_truths,
normalized_predictions[:, eval_indices],
prediction_precision_limit)
def true_false_positive_negative_df(df):
"""Computes df of all example/label pairs, and whether they were correct.
Args:
df: pd.Dataframe that has columns: true_label. Contains a set of true
labels. predicted_label. Contains a set of true labels. sequence_name.
string. Accession.
Returns:
pd.DataFrame that has columns:
sequence_name. string. Name of sequence (accession).
class. string. Class name. Either predicted or true.
predicted. np.bool. Whether the class was predicted for the sequence.
true. np.bool. Whether the class label is true for the sequence.
true_positive. Whether the prediction is a true positive.
false_positive. Whether the prediction is a false positive.
false_negative. Whether the prediction is a false negative.
"""
dict_prep_for_df = {
'sequence_name': [],
'class': [],
'predicted': [],
'true': []
}
for _, row in tqdm.tqdm(df.iterrows(), position=0, total=len(df)):
all_classes = row.predicted_label.union(row.true_label)
for cls in all_classes:
dict_prep_for_df['sequence_name'].append(row.sequence_name)
dict_prep_for_df['class'].append(cls)
dict_prep_for_df['predicted'].append(cls in row.predicted_label)
dict_prep_for_df['true'].append(cls in row.true_label)
working_df = pd.DataFrame(dict_prep_for_df)
working_df.predicted = working_df.predicted.astype(np.bool)
working_df.true = working_df.true.astype(np.bool)
working_df['true_positive'] = working_df.predicted & working_df.true
working_df['false_positive'] = working_df.predicted & ~working_df.true
working_df['false_negative'] = ~working_df.predicted & working_df.true
return working_df
def multilabel_precision_per_example_label_pair(
df):
"""Computes precision score of predictions in dataframe.
Each (example, prediction) pair counts as "one" toward the precision. This is
different than counting each class equally, or counting each example evenly.
Args:
df: E.g. output of true_false_positive_negative_df that has columns
true_positive. bool. false_positive. bool.
Returns:
precision. Does not consider any thresholds.
"""
true_positive = df.true_positive.sum().astype(float)
false_positive = df.false_positive.sum().astype(float)
return true_positive / (true_positive + false_positive)
def multilabel_recall_per_example_label_pair(
df):
"""Computes f1 score of predictions in dataframe.
Each (example, prediction) pair counts as "one" toward the recall. This is
different than counting each class equally, or counting each example evenly.
Args:
df: E.g. output of true_false_positive_negative_df that has columns
true_positive. bool. false_negative. bool.
Returns:
recall. Does not consider any thresholds.
"""
true_positive = df.true_positive.sum().astype(float)
false_negative = df.false_negative.sum().astype(float)
return true_positive / (true_positive + false_negative)
def multilabel_f1_per_example_label_pair(
df):
"""Computes f1 score of predictions in dataframe.
Each (example, prediction) pair counts as "one" toward the f1 score. This is
different than counting each class equally, or counting each example evenly.
Args:
df: has columns: true_positive. bool. false_positive. bool. false_negative.
bool.
Returns:
f1 score. Harmonic mean of precision and recall. Does not consider any
thresholds.
"""
precision = multilabel_precision_per_example_label_pair(df)
recall = multilabel_recall_per_example_label_pair(df)
return 2. * (precision * recall) / (precision + recall)
def normalize_predictions(
to_normalize,
normalize_map):
normalized_non_flattened = [normalize_map[e] for e in to_normalize]
return frozenset(itertools.chain(*normalized_non_flattened)) # Flatten list.
def precision_recall_f1(
df,
label_normalizing_dict):
"""Returns precision, recall, and f1 for a dataframe.
Args:
df: pd.DataFrame with columns sequence_name, true__label, and
predicted_label.
label_normalizing_dict: dictionary of label to implied labels. Used to
normalize labels into canonical form (e.g. an obsolete label is normalized
into its replacement). See parenthood_lib.get_applicable_label_dict.
Returns:
PrecisionRecallF1.
"""
blast_prepped = pd.DataFrame()
blast_prepped['sequence_name'] = df.sequence_name
blast_prepped['predicted_label'] = df.predicted_label.apply(
lambda x: normalize_predictions(x, label_normalizing_dict))
blast_prepped['true_label'] = df.true_label
denormalized = true_false_positive_negative_df(blast_prepped)
precision = multilabel_precision_per_example_label_pair(denormalized)
recall = multilabel_recall_per_example_label_pair(denormalized)
f1 = multilabel_f1_per_example_label_pair(denormalized)
return precision, recall, f1
def filter_predictions_to_above_threshold(
predictions, decision_threshold,
label_vocab):
"""Computes predictions above `decision_threshold` for each example.
Args:
predictions: np.array, (2-d) of float. Outer dimension is example, inner
dimension is class label. I.e. predictions[2, 3] is the probability that
for example 2, the third class is true.
decision_threshold: float. Classes with predictions above this threshold
will be included in the output.
label_vocab: np.array (1-d) of string. List of classes that corresponds to
prediction.
Returns:
List of FrozenSet. Outer dimension is the example number within this batch,
inner is a set of labels predicted that have confidence over
decision_threshold.
"""
preds_per_sequence = []
for row in predictions:
preds_per_sequence.append(
frozenset(label_vocab[np.array(row) > decision_threshold]))
return preds_per_sequence
def get_predictions_above_threshold(
input_df,
inferrer,
decision_threshold,
label_vocab = None):
"""Return df of predictions above a threshold for each sequence.
Args:
input_df: pd.DataFrame with columns sequence_name, sequence.
inferrer: inferrer from a savedmodel model (see
protein_task.MultiDiscreteLabelProteinTask) with activation_type
'serving_default'.
decision_threshold: float. Classes with predictions above this threshold
will be included in the output.
label_vocab: A numpy array with the string labels in vocab order. If None,
will try to fetch this tensor from `inferrer`.
Returns:
pd.DataFrame with columns sequence_name, sequence, and predicted_label,
where the values in column predicted_label are frozenset of labels
that had confidences above decision_threshold.
"""
if label_vocab is None:
label_vocab = inferrer.get_variable('label_vocab:0')
working_df = input_df.copy()
df_with_predictions = inference.predictions_for_df(working_df, inferrer)
preds_per_sequence = filter_predictions_to_above_threshold(
predictions=df_with_predictions['predictions'].values,
decision_threshold=decision_threshold,
label_vocab=label_vocab)
df_with_predictions.drop(columns=['predictions'], inplace=True)
df_with_predictions['predicted_label'] = preds_per_sequence
return df_with_predictions
def _family_and_clan_to_just_clan(
family_and_clan):
"""Converts family_and_clan to just a clan if there is one.
Args:
family_and_clan: a set of either just a family, or a family and its
associated clan.
Returns:
If family_and_clan is only a family, return family_and_clan. If
family_and_clan has a clan, only return the clan.
Raises:
ValueError if len(family_and_clan != 1 or 2.
Also raises if len(family-and_clan) == 2 and there's no clan in it.
"""
if len(family_and_clan) == 1:
return frozenset(family_and_clan)
if len(family_and_clan) == 2:
for f_or_c in family_and_clan:
if f_or_c.startswith('Pfam:CL'):
return frozenset([f_or_c])
raise ValueError('family_and_clan was length 2, but did not have a clan in '
'it. family_and_clan was {}'.format(family_and_clan))
raise ValueError('Expected either one or two values for family_and_clan. '
'Was {}'.format(family_and_clan))
def pfam_label_normalizer_to_lifted_clan(
label_normalizer):
"""Converts label_normalizer (that may contan EC etc.) to lifted clans."""
working_dict = copy.deepcopy(label_normalizer)
working_dict = {k: v for k, v in working_dict.items() if k.startswith('Pfam')}
return {k: _family_and_clan_to_just_clan(v) for k, v in working_dict.items()}
def convert_pfam_ground_truth_to_lifted_clans(
ground_truth,
label_normalizer):
"""Converts ground truth to only have labels that are lifted clans.
The label normalizer may be already a lifted clan normalizer or it may be
a non-lifted clan normalizer.
Args:
ground_truth: pd.DataFrame with columns sequence_name (str),
true_label(Set[str]).
label_normalizer: label normalizer. This will be converted to a lifted clan
normalizer for use internally.
Returns:
pd.DataFrame with columns sequence_name (str), true_label(FrozenSet[str]).
"""
lifted_label_normalizer = pfam_label_normalizer_to_lifted_clan(
label_normalizer)
working_df = ground_truth.copy()
working_df['true_label'] = working_df.true_label.apply(
lambda l: normalize_predictions(l, lifted_label_normalizer))
return working_df
def _ec_label_at_level(label, level):
"""Return EC label up to and including level, or nan if it's a hyphen."""
# nan is a useful value for pd.DataFrame that's used to indicate missing
# data.
label = label.replace('EC:', '')
split = label.split('.')
if split[level - 1] == '-':
return np.nan
return '.'.join(split[:level])
def ec_agreement_for_level(df,
level):
"""Returns agreement and disagreement between predictions and truth.
Computes agreement, disagreement, and no-calls between true labels and
predicted labels at level 1, 2, 3, or 4 in the EC hierarchy. If the ground
truth label has a dash at this level, this is not included in our analysis
of agreement/disagreement, as there's nothing to agree or disagree about.
See the test for a more exhaustive listing of cases.
Args:
df: pd.DataFrame with columns 'true_label' (str) and 'predicted_label'
(str). It's assumed that the input proteins are single-function enzymes,
and that true and predicted label are the most specific predictions
available (e.g. EC:1.2.3.4 instead of EC:1.2.3.-).
level: int between 1 and 4.
Returns:
tuple of ints: [agreement, disagreement, no call made].
Raises:
ValueError if level is not between 1 and 4 inclusive.
"""
if not (level >= 1 and level <= 4):
raise ValueError(
'Expected level to be between 1 and 4. Was {}'.format(level))
get_ec_at_level = lambda x: _ec_label_at_level(x, level)
true_labels = df.true_label.apply(get_ec_at_level)
predicted_labels = df.predicted_label.apply(get_ec_at_level)
has_ground_truth_label = true_labels.notna()
pred_made = has_ground_truth_label & (predicted_labels.notna())
agree = has_ground_truth_label & pred_made & (true_labels == predicted_labels)
disagree = has_ground_truth_label & pred_made & (
true_labels != predicted_labels)
agree_numerator = sum(agree)
disagree_numerator = sum(disagree)
no_pred_made_numerator = sum(~pred_made & has_ground_truth_label)
if (agree_numerator + disagree_numerator + no_pred_made_numerator !=
sum(has_ground_truth_label)):
# Internal correctness check, so raise an AssertionError, not a ValueError.
error_msg = (f'Expected the sum agree_numerator + disagree_numerator + '
f'no_pred_made_numerator == sum(has_ground_truth_label): were '
f'{agree_numerator}, {disagree_numerator}, '
f'{no_pred_made_numerator} {sum(has_ground_truth_label)}')
raise AssertionError(error_msg)
return agree_numerator, disagree_numerator, no_pred_made_numerator