-
Notifications
You must be signed in to change notification settings - Fork 92
/
transformer_decoder.py
211 lines (176 loc) · 8.15 KB
/
transformer_decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# coding=utf-8
# Copyright 2019 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Transformer decoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from typing import Any, Mapping, Text
import tensorflow as tf
from official_transformer import attention_layer
from official_transformer import embedding_layer
from official_transformer import ffn_layer
from official_transformer import model_utils
from official_transformer import transformer
class TransformerDecoder(transformer.Transformer):
"""Transformer decoder.
Attributes:
train: Whether the model is in training mode.
params: Model hyperparameters.
"""
def __init__(self, params, train):
"""Initializes layers to build Transformer model.
Args:
params: hyperparameter object defining layer sizes, dropout values, etc.
train: boolean indicating whether the model is in training mode. Used to
determine if dropout layers should be added.
"""
self.train = train
self.params = params
self.embedding_softmax_layer = embedding_layer.EmbeddingSharedWeights(
params["vocab_size"], params["hidden_size"],
method="matmul" if params["use_tpu"] else "gather")
if self.params["use_full_attention"]:
self.decoder_stack = transformer.DecoderStack(params, train)
else:
self.decoder_stack = DecoderStack(params, train)
def __call__(self, inputs, encoder_outputs, targets=None):
"""Calculates target logits or inferred target sequences.
Args:
inputs: int tensor with shape [batch_size, input_length].
encoder_outputs: int tensor with shape
[batch_size, input_length, hidden_size]
targets: None or int tensor with shape [batch_size, target_length].
Returns:
If targets is defined, then return logits for each word in the target
sequence. float tensor with shape [batch_size, target_length, vocab_size]
If target is none, then generate output sequence one token at a time.
returns a dictionary {
output: [batch_size, decoded length]
score: [batch_size, float]}
"""
# Variance scaling is used here because it seems to work in many problems.
# Other reasonable initializers may also work just as well.
initializer = tf.variance_scaling_initializer(
self.params["initializer_gain"], mode="fan_avg", distribution="uniform")
with tf.variable_scope("Transformer", initializer=initializer):
# Calculate attention bias for encoder self-attention and decoder
# multi-headed attention layers.
attention_bias = model_utils.get_padding_bias(inputs)
# Generate output sequence if targets is None, or return logits if target
# sequence is known.
if targets is None:
return self.predict(encoder_outputs, attention_bias)
else:
logits = self.decode(targets, encoder_outputs, attention_bias)
return logits
def _get_symbols_to_logits_fn(self, max_decode_length):
"""Returns a decoding function that calculates logits of the next tokens."""
timing_signal = model_utils.get_position_encoding(
max_decode_length + 1, self.params["hidden_size"])
decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias(
max_decode_length)
def symbols_to_logits_fn(ids, i, cache):
"""Generate logits for next potential IDs.
Args:
ids: Current decoded sequences.
int tensor with shape [batch_size * beam_size, i + 1]
i: Loop index
cache: dictionary of values storing the encoder output, encoder-decoder
attention bias, and previous decoder attention values.
Returns:
Tuple of
(logits with shape [batch_size * beam_size, vocab_size],
updated cache values)
"""
# Set decoder input to the last generated IDs
decoder_input = ids[:, -1:]
# Preprocess decoder input by getting embeddings and adding timing signal.
decoder_input = self.embedding_softmax_layer(decoder_input)
decoder_input += timing_signal[i:i + 1]
self_attention_bias = decoder_self_attention_bias[:, :, i:i + 1, :i + 1]
if self.params["use_full_attention"]:
encoder_outputs = cache.get("encoder_outputs")
else:
encoder_outputs = cache.get("encoder_outputs")[:, i:i+1]
decoder_outputs = self.decoder_stack(
decoder_input, encoder_outputs, self_attention_bias,
cache.get("encoder_decoder_attention_bias"), cache)
logits = self.embedding_softmax_layer.linear(decoder_outputs)
logits = tf.squeeze(logits, axis=[1])
return logits, cache
return symbols_to_logits_fn
class DecoderStack(tf.layers.Layer):
"""Modified Transformer decoder stack.
Like the standard Transformer decoder stack but:
1. Removes the encoder-decoder attention layer, and
2. Adds a layer to project the concatenated [encoder activations, hidden
state] to the hidden size.
"""
def __init__(self, params, train):
super(DecoderStack, self).__init__()
self.layers = []
for _ in range(params["num_hidden_layers"]):
self_attention_layer = attention_layer.SelfAttention(
params["hidden_size"], params["num_heads"],
params["attention_dropout"], train)
feed_forward_network = ffn_layer.FeedFowardNetwork( # NOTYPO
params["hidden_size"], params["filter_size"],
params["relu_dropout"], train, params["allow_ffn_pad"])
proj_layer = tf.layers.Dense(
params["hidden_size"], use_bias=True, name="proj_layer")
self.layers.append([
transformer.PrePostProcessingWrapper(
self_attention_layer, params, train),
transformer.PrePostProcessingWrapper(
feed_forward_network, params, train),
proj_layer])
self.output_normalization = transformer.LayerNormalization(
params["hidden_size"])
def call(self, decoder_inputs, encoder_outputs, decoder_self_attention_bias,
attention_bias=None, cache=None):
"""Returns the output of the decoder layer stacks.
Args:
decoder_inputs: tensor with shape [batch_size, target_length, hidden_size]
encoder_outputs: tensor with shape [batch_size, input_length, hidden_size]
decoder_self_attention_bias: bias for decoder self-attention layer.
[1, 1, target_len, target_length]
attention_bias: bias for encoder-decoder attention layer.
[batch_size, 1, 1, input_length]
cache: (Used for fast decoding) A nested dictionary storing previous
decoder self-attention values. The items are:
{layer_n: {"k": tensor with shape [batch_size, i, key_channels],
"v": tensor with shape [batch_size, i, value_channels]},
...}
Returns:
Output of decoder layer stack.
float32 tensor with shape [batch_size, target_length, hidden_size]
"""
for n, layer in enumerate(self.layers):
self_attention_layer = layer[0]
feed_forward_network = layer[1]
proj_layer = layer[2]
decoder_inputs = tf.concat([decoder_inputs, encoder_outputs], axis=-1)
decoder_inputs = proj_layer(decoder_inputs)
# Run inputs through the sublayers.
layer_name = "layer_%d" % n
layer_cache = cache[layer_name] if cache is not None else None
with tf.variable_scope(layer_name):
with tf.variable_scope("self_attention"):
decoder_inputs = self_attention_layer(
decoder_inputs, decoder_self_attention_bias, cache=layer_cache)
with tf.variable_scope("ffn"):
decoder_inputs = feed_forward_network(decoder_inputs)
return self.output_normalization(decoder_inputs)