-
Notifications
You must be signed in to change notification settings - Fork 158
/
Copy pathevaluator.proto
131 lines (128 loc) · 7.38 KB
/
evaluator.proto
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// Copyright 2023 The Deeplab2 Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto2";
package deeplab2;
// Next ID: 24
message EvaluatorOptions {
// Set the number of steps to run evaluation. -1 corresponds to a run over the
// full dataset.
optional int32 eval_steps = 1 [default = -1];
// Set the number of train steps after which eval should run in interleaved
// mode.
optional int32 eval_interval = 2 [default = 5000];
// Set the number of seconds to wait at most for the next checkpoint. -1 means
// the job will wait forever.
optional int32 continuous_eval_timeout = 3 [default = -1];
// Set whether to run evaluation as a tf function.
optional bool use_tf_function = 4 [default = true];
// Set the area size of stuff segments to discard (set to ignore_label).
optional int32 stuff_area_limit = 6 [default = 0];
// Set the area size of thing segments to discard (set to ignore_label). Note
// that this option is currently only supported in MaX-DeepLab.
optional int32 thing_area_limit = 19 [default = 0];
// Set the threshold for the transformer class confidence.
optional float transformer_class_confidence_threshold = 20 [default = 0.7];
// Set the threshold for the per-pixel mask confidence. Note that this option
// is currently only supported in MaX-DeepLab.
optional float pixel_confidence_threshold = 21 [default = 0.4];
// A string specifying types of post-processing for transformer models,
// currently we support two types:
// "pixelwise": Two simple argmax operations for pixel and transformer class
// are used, respectively, to obtain the panoptic prediction.
// "maskwise": Firstly a thresholding is applied to obtain the binary mask for
// each mask slot, which are re-ordered based on its confidence score.
// Afterwards, we paste these binary masks onto an empty canvas one by one
// from high-confidence to low-confidence. Besides, different thresholding
// values for thing and stuff classes are supported. The hyper parameters
// are set in MaskwisePostProcessingOptions.
optional string transformer_post_processing = 22 [default = 'pixelwise'];
message MaskwisePostProcessingOptions {
// Set the threshold for the transformer thing class confidence in mask-wise
// post-processing.
optional float transformer_class_confidence_threshold_thing = 1
[default = 0.7];
// Set the threshold for the transformer thing stuff confidence in mask-wise
// post-processing.
optional float transformer_class_confidence_threshold_stuff = 2
[default = 0.7];
// Set the threshold for overlapping ratio among binary masks in mask-wise
// post-processing.
optional float overlapping_threshold = 3 [default = 0.5];
// Set the weight of class term when ranking mask slots in mask-wise
// post-processing. The ranking is based on the confidence score, which is
// computed as: (class_confidence ** maskwise_reorder_class_weight) * (
// pixel_confidence ** maskwise_reorder_mask_weight).
optional float reorder_class_weight = 4 [default = 1.0];
// Set the weight of mask term when ranking mask slots in mask-wise
// post-processing. The ranking is based on the confidence score, which is
// computed as: (class_confidence ** maskwise_reorder_class_weight) * (
// pixel_confidence ** maskwise_reorder_mask_weight).
optional float reorder_mask_weight = 5 [default = 0.0];
}
// Set the option for the maskwise post-processing.
optional MaskwisePostProcessingOptions maskwise_postprocessing = 23;
// Set the threshold of the center heatmap for post-processing.
optional float center_score_threshold = 7 [default = 0.1];
// Set the kernel size of the nms kernel for the center heatmap.
optional int32 nms_kernel = 8 [default = 3];
// Set the number of top centers to keep. -1 corresponds to keeping all
// centers.
optional int32 keep_k_centers = 9 [default = 400];
// Enable saving predictions to disk.
optional bool save_predictions = 10 [default = false];
// Override the storing location. By default, predictions are written to
// `experiment_root` + `experiment_name` + `vis`.
optional string override_save_dir = 11;
// Set the number of samples to visualize.
optional int32 num_vis_samples = 12 [default = 10];
// Enable saving raw predictions for the whole dataset. The output path is the
// save_dir + `raw_semantic`/`raw_panoptic`.
optional bool save_raw_predictions = 13 [default = false];
// The format of raw panoptic predictions. This flag is used together with
// `save_raw_predictions`. When save_raw_predictions is True, this field
// specifies the format of saved raw panoptic predictions. Supports:
// - 'two_channel_png': The popular format, also supported by the official
// COCO panoptic API (https://github.com/cocodataset/panopticapi), where
// the saved PNG image contains R-channel for semantic labels and
// G-channel for instance IDs.
// - 'three_channel_png': A simple extension of the 'two_channel_png' format,
// and is adopted in some video panoptic segmentation datasets (for
// example, KITTI-STEP and MOTChallenge-STEP), where the saved PNG image
// contains R-channel for semantic labels, G-channel for the values of
// (instance ID // 256), and B-channel for (instance ID % 256).
// - 'two_channel_numpy_array': A more flexible format (unconstrained by the
// PNG channel size), where the panoptic predictions are saved as a numpy
// array in the two channel format (i.e., first channel encodes the
// semantic class and the second channel the instance ID).
optional string raw_panoptic_format = 17 [default = 'two_channel_png'];
// Enable conversion of train IDs to eval IDs for raw predictions.
optional bool convert_raw_to_eval_ids = 14 [default = true];
// Add flipped images for evaluation or not. This is used for multi-scale
// inference (usually used together with `eval_scales`). If True, another
// flipped image will be used during inference.
optional bool add_flipped_images = 5 [default = false];
// The scales to resize images for inference. Change it to, e.g. [0.5, 0.75,
// 1.0, 1.25, 1.5, 1.75], for multi-scale inference.
repeated float eval_scales = 15 [packed = true];
// Boolean, if true, use TensorFlow operation (CUDA kernel) to merge
// semantic and instance segmentation (for the final panoptic segmentation).
// Defaults to true, as our GPU implementation is much faster. Set to false
// if you could not successfully compile TensorFlow with this operation.
optional bool merge_semantic_and_instance_with_tf_op = 16 [default = true];
// Displays detailed metrics on instance segmentation AP. This includes e.g.
// AP at a matching IoU threshold of 0.5, or the AP of small objects only,
// etc. If false, will only display a summary AP metric that's an average of
// IoU thresholds and over all objects.
optional bool detailed_ap_metrics = 18 [default = false];
}