-
Notifications
You must be signed in to change notification settings - Fork 33
/
irn_test.py
59 lines (50 loc) · 1.68 KB
/
irn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# Copyright 2024 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for IRN aggregation."""
import functools
from absl.testing import absltest
from absl.testing import parameterized
import jax
import jax.numpy as jnp
import numpy as np
import irn
class IrnTest(parameterized.TestCase):
def test_sample_prirn(self):
plausibilities = jnp.array([
[0.4, 0.3, 0.2, 0.1],
[0.8, 0.1, 0.05, 0.05],
])
num_examples, num_classes = plausibilities.shape
num_samples = 10
sample_prirn = jax.jit(
functools.partial(
irn.sample_prirn,
num_samples=num_samples,
temperature=1e6,
alpha=0,
)
)
sampled_plausibilities = sample_prirn(jax.random.PRNGKey(0), plausibilities)
np.testing.assert_array_equal(
sampled_plausibilities.shape, (num_examples, num_samples, num_classes)
)
for i in range(num_samples):
np.testing.assert_array_almost_equal(
plausibilities,
sampled_plausibilities[:, i],
decimal=2,
)
if __name__ == '__main__':
absltest.main()