-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
run.sh
47 lines (37 loc) · 1.53 KB
/
run.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/bin/bash
# Copyright 2020 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Fail on any error.
set -e
# Display commands being run.
set -x
TMP_DIR=`mktemp -d`
virtualenv --python=python3.6 "${TMP_DIR}/env"
source "${TMP_DIR}/env/bin/activate"
# Install dependencies.
pip install --upgrade -r meshgraphnets/requirements.txt
# Download minimal dataset
DATA_DIR="${TMP_DIR}/flag_minimal"
bash meshgraphnets/download_dataset.sh flag_minimal ${TMP_DIR}
# Train for a few steps.
CHK_DIR="${TMP_DIR}/checkpoint"
python -m meshgraphnets.run_model --model=cloth --mode=train --checkpoint_dir=${CHK_DIR} --dataset_dir=${DATA_DIR} --num_training_steps=10
# Generate a rollout trajectory
ROLLOUT_PATH="${TMP_DIR}/rollout.pkl"
python -m meshgraphnets.run_model --model=cloth --mode=eval --checkpoint_dir=${CHK_DIR} --dataset_dir=${DATA_DIR} --rollout_path=${ROLLOUT_PATH} --num_rollouts=1
# Plot the rollout trajectory
python -m meshgraphnets.plot_cloth --rollout_path=${ROLLOUT_PATH}
# Clean up.
rm -r ${TMP_DIR}
echo "Test run complete."