-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcuda_launcher.c.template.tg
659 lines (617 loc) · 21.7 KB
/
cuda_launcher.c.template.tg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
#include "test.cu"
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <string.h>
#include <stdbool.h>
#include <builtin_types.h>
#include "device_launch_parameters.h"
#include "cuda_runtime.h"
#define checkCuErrors(err) __checkCuErrors(err, __FILE__, __LINE__)
#define checkCudaErrors(err) __checkCudaErrors(err, __FILE__, __LINE__)
//#define uint unsigned int
#define ENTRY_TG
#define ENTRY_TEMP_FUN(blocks,threads,k1,k2)\
entry<<<blocks,threads>>>((long*)k1,(int*)k2)
#define ENTRY_BASIC_FUN(blocks,threads,k1,k2)\
entry<<<blocks,threads>>>((long*)k1,(int*)k2)
#define ENTRY_BARRIER_FUN(blocks,threads,k1,k2,k3)\
entry<<<blocks,threads>>>((long*)k1,(int*)k2,(long*)k3)
#define ENTRY_ATOMIC_REDUCTION_FUN(blocks,threads,k1,k2,k3)\
entry<<<blocks,threads>>>((long*)k1,(volatile int*)k2,(int*)k3)
#define ENTRY_ATOMIC_FUN(blocks,threads,k1,k2,k3,k4)\
entry<<<blocks,threads>>>((long*)k1,(volatile uint*)k2,(volatile uint*)k3,(int*)k4)
#define ENTRY_VECTOR_FUN(blocks,threads,k1,k2)\
entry<<<blocks,threads>>>((long*)k1,(int*)k2)
#define ENTRY_EMI_FUN(blocks,threads,k1,k2,k3,k4,k5,k6,k7)\
entry<<<blocks,threads>>>((long*)k1,(volatile uint*)k2,(volatile uint*)k3,(volatile int*)k4,(int*)k5,(int*)k6,(long*)k7)
#define ENTRY_TG_FUN(blocks,threads,k1,k2,k3,k4,k5,k6,k7)\
entry<<<blocks,threads>>>((long*)k1,(volatile uint*)k2,(volatile uint*)k3,(volatile int*)k4,(int*)k5,(int*)k6,(long*)k7)
#define ENTRY_ALL_FUN(blocks,threads,k1,k2,k3,k4,k6,k7)\
entry<<<blocks,threads>>>((long*)k1,(volatile uint*)k2,(volatile uint*)k3,(volatile int*)k4,(int*)k6,(long*)k7)
void __checkCuErrors(CUresult err, const char *file, const int line)
{
if (CUDA_SUCCESS != err)
{
fprintf(stderr,
"CUDA Driver API error = %04d from file <%s>, line %i.\n",
err, file, line);
exit(-1);
}
}
void __checkCudaErrors(cudaError_t err, const char *file, const int line)
{
if (CUDA_SUCCESS != err)
{
fprintf(stderr,
"CUDA Runtime API error = %04d from file <%s>, line %i.\n",
err, file, line);
cudaGetErrorString(cudaGetLastError());
exit(EXIT_FAILURE);
}
}
#ifdef EMBEDDED
typedef unsigned int RES_TYPE;
#else
typedef unsigned long RES_TYPE;
#endif
#define DEF_LOCAL_SIZE 32
#define DEF_GLOBAL_SIZE 1024
#define REQ_ARG_COUNT 1
//user input
//const char *file;
char *file;
const char *cubin_file;
const char *args_file = NULL;
size_t binary_size = 0;
char *include_path = ".";
bool debug_build = false;
bool disable_opts = true;
bool disable_fake = false;
bool disable_atomics = false;
bool output_binary = false;
bool set_device_from_name = false;
// Kernel parameters.
bool atomics = false;
int atomic_counter_no = 0;
bool atomic_reductions = false;
bool emi = false;
bool tg = false;
bool fake_divergence = false;
bool inter_thread_comm = false;
//void *args[6];
void *args[7];
// Data to free.
char *source_text = NULL;
char *buf = NULL;
RES_TYPE *h_init_result = NULL;
uint *h_init_atomic_vals = NULL;
uint *h_init_special_vals = NULL;
int *global_reduction_target = NULL;
size_t *local_size = NULL;
size_t *global_size = NULL;
int grid_dim[3] = {1, 1, 1}; //给定的每个维度grid包含的block数=global_size/local_size
char *local_dims = "";
char *global_dims = "";
int *h_sequence_input = NULL;
long *h_comm_vals = NULL;
CUdeviceptr d_init_atomic_vals, d_init_special_vals;
CUdeviceptr d_init_result;
CUdeviceptr atomic_reduction_vals;
CUdeviceptr emi_input;
CUdeviceptr tg_input;
CUdeviceptr d_sequence_input;
CUdeviceptr d_comm_vals;
// Other parameters
int total_threads = 1;
int no_blocks = 1;
int l_dim = 1;
int g_dim = 1;
// --- global variables ----------------------------------------------------
CUdevice device;
CUcontext context;
size_t totalGlobalMem;
size_t freeGlobalMem;
char *kernel_name = (char *)"entry";
int parse_arg(char *arg, char *val);
int parse_file_args(const char *filename);
int device_index = 0;
// --- functions -----------------------------------------------------------
void print_help()
{
printf("Usage: ./cuda_launcher -f <cu_program> -cubin_file <cubin_program> -d <device_idx> [flags...]\n");
printf("\n");
printf("Required flags are:\n");
printf(" -f FILE --filename FILE Test file\n");
printf(" -cubin_file FILE Test file\n");
printf(" -p IDX --platform_idx IDX Target platform\n");
printf(" -d IDX --device_idx IDX Target device\n");
printf("\n");
printf("Optional flags are:\n");
printf(" -i PATH --include_path PATH Include path for kernels (. by default)\n"); //FGG
printf(" -b N --binary N Compiles the kernel to binary, allocating N bytes\n");
printf(" -l N --locals N A string with comma-separated values representing the number of work-units per group per dimension\n");
printf(" -g N --groups N Same as -l, but representing the total number of work-units per dimension\n");
printf(" -a FILE --args FILE Look for file-defined arguments in this file, rather than the test file\n");
printf(" --atomics Test uses atomic sections\n");
printf(" ---atomic_reductions Test uses atomic reductions\n");
printf(" ---emi Test uses EMI\n");
printf(" ---fake_divergence Test uses fake divergence\n");
printf(" ---inter_thread_comm Test uses inter-thread communication\n");
printf(" ---debug Print debug info\n");
printf(" ---bin Output disassembly of kernel in out.bin\n");
printf(" ---disable_opts Disable OpenCL compile optimisations\n");
printf(" ---disable_fake Disable fake divergence feature\n");
printf(" ---disable_atomics Disable atomic sections and reductions\n");
printf(" ---set_device_from_name\n");
printf(" Ignore target platform -p and device -d\n");
printf(" Instead try to find a matching platform/device based on the device name\n");
}
void initCUDA()
{
int deviceCount = 0;
CUresult err = cuInit(0);
int major = 0, minor = 0;
// int deviceNum[10];
if (err == CUDA_SUCCESS)
checkCuErrors(cuDeviceGetCount(&deviceCount));
if (deviceCount == 0)
{
// fprintf(stderr, "Error: no devices supporting CUDA\n");
printf("Error: no devices supporting CUDA\n");
exit(-1);
}
/* else{
for(int i = 0; i < deviceCount; i++)
deviceNum[i] = i;
}
*/
// get first CUDA device
checkCuErrors(cuDeviceGet(&device, device_index));
// checkCudaErrors(cudaGetDevice(deviceNum[0]));
// get compute capabilities and the devicename
char name[100];
cuDeviceGetName(name, 100, device);
// printf("> Using device %d: %s\n",device_index, name);
checkCuErrors(cuDeviceComputeCapability(&major, &minor, device));
// printf("> GPU Device has SM %d.%d compute capability\n", major, minor);
checkCuErrors(cuDeviceTotalMem(&totalGlobalMem, device));
// checkCudaErrors(cudaMemGetInfo(&freeGlobalMem,&totalGlobalMem));
// printf(" Total amount of global memory: %llu bytes\n",
// (unsigned long long)totalGlobalMem);
// printf(" 64-bit Memory Address: %s\n",
// (totalGlobalMem > (unsigned long long)4*1024*1024*1024L)?
// "YES" : "NO");
err = cuCtxCreate(&context, 0, device);
if (err != CUDA_SUCCESS)
{
// fprintf(stderr, "* Error initializing the CUDA context.\n");
printf("Error initializing the CUDA context.\n");
cuCtxDetach(context);
exit(-1);
}
}
void finalizeCUDA()
{
cuCtxDetach(context);
}
void setupMemory()
{
//printf("total_threads:%d",total_threads);
h_init_result = (RES_TYPE *)malloc(sizeof(RES_TYPE) * total_threads);
int counter;
for (counter = 0; counter < total_threads; counter++)
h_init_result[counter] = 0;
checkCuErrors(cuMemAlloc(&d_init_result, sizeof(RES_TYPE) * total_threads));
// printf("&d_init_result:%x,d_init_result:%x\n",&d_init_result,d_init_result);
checkCuErrors(cuMemcpyHtoD(d_init_result, h_init_result, sizeof(RES_TYPE) * total_threads));
checkCuErrors(cuMemcpyDtoH(h_init_result, d_init_result, sizeof(RES_TYPE) * total_threads));
int kernel_arg = 0;
//args[kernel_arg++] = &d_init_result;
args[kernel_arg++] =(void *) d_init_result;
if (atomics)
{
// Create buffer to store counters for the atomic blocks
int total_counters = atomic_counter_no * no_blocks;
h_init_atomic_vals = (uint *)malloc(sizeof(uint) * total_counters);
h_init_special_vals = (uint *)malloc(sizeof(uint) * total_counters);
//init
int i;
for (i = 0; i < total_counters; i++)
{
h_init_atomic_vals[i] = 0;
h_init_special_vals[i] = 0;
}
checkCuErrors(cuMemAlloc(&d_init_atomic_vals, sizeof(uint) * total_counters));
checkCuErrors(cuMemAlloc(&d_init_special_vals, sizeof(uint) * total_counters));
checkCuErrors(cuMemcpyHtoD(d_init_atomic_vals, h_init_atomic_vals, sizeof(uint) * total_counters));
checkCuErrors(cuMemcpyHtoD(d_init_special_vals, h_init_special_vals, sizeof(uint) * total_counters));
// args[kernel_arg++] = &d_init_atomic_vals;
args[kernel_arg++] = (void*)d_init_atomic_vals;
// args[kernel_arg++] = &d_init_special_vals;
args[kernel_arg++] =(void *)d_init_special_vals;
}
if (atomic_reductions)
{
global_reduction_target = (int *)malloc(sizeof(int) * no_blocks);
int i;
for (i = 0; i < no_blocks; i++)
global_reduction_target[i] = 0;
checkCuErrors(cuMemAlloc(&atomic_reduction_vals, sizeof(int) * no_blocks));
checkCuErrors(cuMemcpyHtoD(atomic_reduction_vals, global_reduction_target, sizeof(int) * no_blocks));
// args[kernel_arg++] = &atomic_reduction_vals;
args[kernel_arg++] = (void*)atomic_reduction_vals;
}
if (emi)
{
// Create input buffer for EMI.
int emi_values[1024];
int i;
// for(i = 0; i < 1024; ++i) emi_values[i] = 1024 - i;//false
for (i = 0; i < 1024; ++i)
emi_values[i] = i;//true
checkCuErrors(cuMemAlloc(&emi_input, sizeof(int) * 1024));
checkCuErrors(cuMemcpyHtoD(emi_input, emi_values, sizeof(int) * 1024));
// args[kernel_arg++] = &emi_input;
args[kernel_arg++] = (void*)emi_input;
}
if (tg)
{
// Create input buffer for TG.
int tg_values[1024];
int i;
for(i = 0; i < 1024; ++i) tg_values[i] = 1024 - i;
//for (i = 0; i < 1024; ++i)
// tg_values[i] = i;
checkCuErrors(cuMemAlloc(&tg_input, sizeof(int) * 1024));
checkCuErrors(cuMemcpyHtoD(tg_input, tg_values, sizeof(int) * 1024));
// args[kernel_arg++] = &tg_input;
args[kernel_arg++] = (void*)tg_input;
}
if (fake_divergence)
{
int max_dimen = global_size[0];
int i;
for (i = 1; i < g_dim; i++)
if (global_size[i] > max_dimen)
max_dimen = global_size[i];
h_sequence_input = (int *)malloc(sizeof(int) * max_dimen);
for (i = 0; i < max_dimen; i++)
h_sequence_input[i] = 10 + i;
checkCuErrors(cuMemAlloc(&d_sequence_input, sizeof(int) * max_dimen));
checkCuErrors(cuMemcpyHtoD(d_sequence_input, h_sequence_input, sizeof(int) * max_dimen));
// args[kernel_arg++] = &d_sequence_input;
args[kernel_arg++] =(void*) d_sequence_input;
}
if (inter_thread_comm)
{
// Create input for inter thread communication.
h_comm_vals = (long *)malloc(sizeof(long) * total_threads);
int i;
for (i = 0; i < total_threads; ++i)
h_comm_vals[i] = 1;
checkCuErrors(cuMemAlloc(&d_comm_vals, sizeof(long) * total_threads));
checkCuErrors(cuMemcpyHtoD(d_comm_vals, h_comm_vals, sizeof(long) * total_threads));
//args[kernel_arg++] = &d_comm_vals;
args[kernel_arg++] =(void*) d_comm_vals;
}
}
void releaseMemory()
{
free(global_size);
free(local_size);
if (atomics)
{
free(h_init_atomic_vals);
free(h_init_special_vals);
checkCuErrors(cuMemFree(d_init_atomic_vals));
checkCuErrors(cuMemFree(d_init_special_vals));
}
if (atomic_reductions)
{
free(global_reduction_target);
checkCuErrors(cuMemFree(atomic_reduction_vals));
}
if (fake_divergence)
{
free(h_sequence_input);
checkCuErrors(cuMemFree(d_sequence_input));
}
if (inter_thread_comm)
{
free(h_comm_vals);
checkCuErrors(cuMemFree(d_comm_vals));
}
}
void runKernel()
{
//initCUDA();
//checkCuErrors(cuLaunchKernel(function, grid_dim[0], grid_dim[1], grid_dim[2],
// local_size[0], local_size[1], local_size[2], 0, 0, args, 0));
//
// printf("grid:(%d,%d,%d)",grid_dim[0],grid_dim[1],grid_dim[2]);
// printf("local:(%d,%d,%d)",local_size[0],local_size[1],local_size[2]);
dim3 blocks(grid_dim[0], grid_dim[1], grid_dim[2]);
dim3 threads(local_size[0], local_size[1], local_size[2]);
// printf("\n%x,%x,%x,%x,%x,%x,%x\n",args[0],args[1],args[2],args[3],args[4],args[5],args[6]);
// entry<<<blocks, threads>>>((long *)args[0], (volatile int *)args[1], (volatile int *)args[2], (volatile int *)args[3], (int *)args[4], (int *)args[5], (long *)args[6]);
#ifdef ENTRY_ALL
ENTRY_ALL_FUN(blocks, threads,args[0],args[1],args[2],args[3], args[4],args[5]);
#endif
#ifdef ENTRY_EMI
ENTRY_EMI_FUN(blocks, threads,args[0],args[1],args[2],args[3], args[4],args[5],args[6]);
#endif
#ifdef ENTRY_TG
ENTRY_TG_FUN(blocks, threads,args[0],args[1],args[2],args[3], args[4],args[5],args[6]);
#endif
#ifdef ENTRY_TEMP
ENTRY_TEMP_FUN(blocks,threads,args[0],args[1]);
#endif
#ifdef ENTRY_BASIC
ENTRY_BASIC_FUN(blocks, threads,args[0],args[1]);
#endif
#ifdef ENTRY_BARRIER
ENTRY_BARRIER_FUN(blocks,threads,args[0],args[1],args[2]);
#endif
#ifdef ENTRY_ATOMIC_REDUCTION
ENTRY_ATOMIC_REDUCTION_FUN(blocks,threads,args[0],args[1],args[2]);
#endif
#ifdef ENTRY_ATOMIC
ENTRY_ATOMIC_FUN(blocks,threads,args[0],args[1],args[2],args[3]);
#endif
#ifdef ENTRY_VECTOR
ENTRY_VECTOR_FUN(blocks,threads,args[0],args[1]);
#endif
}
//int main(int argc, char **argv)
int main()
{
int argc = PARAMS_COUNT;
char *argv[PARAMS_COUNT] = {PARAMS_LIST};
// printf("argc:%d\n",argc);
// for (int i = 0; i < argc; i++)
// printf("%s",argv[i] );
// printf("\n");
// Parse the input. Expect three parameters.(--device_idx,--filename,-cubin_file)
if (argc < 4)
{
printf("Expected at least three arguments\n");
print_help();
return 1;
}
int arg_no = 0;
while (++arg_no < argc)
{
if (!strcmp(argv[arg_no],"-g")||!strcmp(argv[arg_no],"-l")
||!strcmp(argv[arg_no],"-d")||!strcmp(argv[arg_no],"--atomics")) {
// printf("%d:%s",arg_no,argv[arg_no]);
// parse_arg(argv[arg_no], argv[++arg_no]);
parse_arg(argv[arg_no], argv[arg_no+1]);
arg_no ++;
}else{
// printf("%d:%s",arg_no,argv[arg_no]);
parse_arg(argv[arg_no], NULL);
}
}
// printf("parse Ok");
// TODO function this
// Parsing thread and group dimension information
if (strcmp(local_dims, "") == 0)
{
local_size = (size_t *)malloc(sizeof(size_t));
local_size[0] = DEF_LOCAL_SIZE;
}
else
{
int i = 0;
while (local_dims[i] != '\0')
if (local_dims[i++] == ',')
l_dim++;
i = 0;
local_size = (size_t *)malloc(l_dim * sizeof(size_t));
char *tok = strtok((char *)local_dims, (const char *)",");
while (tok)
{
local_size[i++] = (size_t)atoi(tok);
tok = strtok(NULL, ",");
}
}
if (strcmp(global_dims, "") == 0)
{
global_size = (size_t *)malloc(sizeof(size_t));
global_size[0] = DEF_GLOBAL_SIZE;
}
else
{
int i = 0;
while (global_dims[i] != '\0')
if (global_dims[i++] == ',')
g_dim++;
i = 0;
global_size = (size_t *)malloc(g_dim * sizeof(size_t));
char *tok = strtok(global_dims, ",");
while (tok)
{
global_size[i++] = atoi(tok);
tok = strtok(NULL, ",");
}
}
if (g_dim != l_dim)
{
printf("Local and global sizes must have same number of dimensions!\n");
return 1;
}
if (l_dim > 3)
{
printf("Cannot have more than 3 dimensions!\n");
return 1;
}
int d;
for (d = 1; d < l_dim; d++)
if (local_size[d] > global_size[d])
{
printf("Local dimension %d greater than global dimension!\n", d);
return 1;
}
// Calculating total number of work-units for future use
int i;
for (i = 0; i < l_dim; i++)
{
total_threads *= global_size[i];
no_blocks *= global_size[i] / local_size[i];
}
// Device ID, not used atm.
if (device_index < 0)
{
printf("Could not parse device id \"%s\"\n", argv[3]);
return 1;
}
initCUDA();
int max_dimensions = 3;
// Checking that number of threads in each dimension per block is OK
int *max_block_dim_x = (int *)malloc(sizeof(int));
int *max_block_dim_y = (int *)malloc(sizeof(int));
int *max_block_dim_z = (int *)malloc(sizeof(int));
checkCuErrors(cuDeviceGetAttribute(max_block_dim_x, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X, device));
checkCuErrors(cuDeviceGetAttribute(max_block_dim_y, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Y, device));
checkCuErrors(cuDeviceGetAttribute(max_block_dim_z, CU_DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_Z, device));
int max_block_dim[3] = {*max_block_dim_x, *max_block_dim_y, *max_block_dim_z};
int curr_dim;
for (curr_dim = 0; curr_dim < max_dimensions; curr_dim++)
{
if (max_block_dim[curr_dim] < local_size[curr_dim])
{
printf("Local work size in dimension %d is %d, which exceeds maximum of %d for this device\n", curr_dim, local_size[curr_dim], max_block_dim[curr_dim]);
return 1;
}
}
free(max_block_dim_x);
free(max_block_dim_y);
free(max_block_dim_z);
for(curr_dim = 0; curr_dim < max_dimensions; curr_dim++){
// printf("global_size[%d] is %d\n",curr_dim,global_size[curr_dim]);
// printf("local_size[%d] is %d\n",curr_dim,local_size[curr_dim]);
grid_dim[curr_dim] = global_size[curr_dim] / local_size[curr_dim];
}
// Checking that block size is not too large(检查每个grid包含的block数目不超过最大值)
int *max_grid_dim_x = (int *)malloc(sizeof(int));
int *max_grid_dim_y = (int *)malloc(sizeof(int));
int *max_grid_dim_z = (int *)malloc(sizeof(int));
checkCuErrors(cuDeviceGetAttribute(max_grid_dim_x, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_X, device));
checkCuErrors(cuDeviceGetAttribute(max_grid_dim_y, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Y, device));
checkCuErrors(cuDeviceGetAttribute(max_grid_dim_z, CU_DEVICE_ATTRIBUTE_MAX_GRID_DIM_Z, device));
int max_grid_dim[3] = {*max_grid_dim_x, *max_grid_dim_y, *max_grid_dim_z};
for (curr_dim = 0; curr_dim < max_dimensions; curr_dim++)
{
if (max_grid_dim[curr_dim] < grid_dim[curr_dim])
{
printf("grid size in dimension %d is %d, which exceeds maximum of %d for this device\n", curr_dim, global_size[curr_dim] / local_size[curr_dim], max_grid_dim[curr_dim]);
return 1;
}
}
free(max_grid_dim_x);
free(max_grid_dim_y);
free(max_grid_dim_z);
setupMemory();
runKernel();
//printf("total_thread:%d",total_threads);
RES_TYPE *c = (RES_TYPE *)malloc(sizeof(RES_TYPE) * total_threads);
if(c==NULL)
printf("c is NULL");
checkCuErrors(cuMemcpyDtoH(c, d_init_result, sizeof(RES_TYPE) * total_threads));
//freopen("Result.txt","w",stdout);
char *result;
result = strtok(file, ".");
// freopen(result,"w",stdout);
for (i = 0; i < total_threads; ++i)
// printf("%016x,", c[i]);
printf("%016x\n",c[i]);
releaseMemory();
free(c);
return 0;
}
/* Function used to parse given arguments. All optional arguments must have a
* return value of 1. The total return value of required arguments must be
* equal to the value of REQ_ARG_COUNT.
*/
int parse_arg(char *arg, char *val)
{
if (!strcmp(arg, "-a") || !strcmp(arg, "--args"))
{
return 1;
}
if (!strcmp(arg, "-d") || !strcmp(arg, "--device_idx"))
{
device_index = atoi(val);
return 2;
}
if (!strcmp(arg, "-l") || !strcmp(arg, "--locals"))
{
local_dims = (char *)malloc((strlen(val) + 1) * sizeof(char));
strcpy(local_dims, val);
return 1;
}
if (!strcmp(arg, "-g") || !strcmp(arg, "--groups"))
{
global_dims = (char *)malloc((strlen(val) + 1) * sizeof(char));
strcpy(global_dims, val);
return 1;
}
if (!strcmp(arg, "-i") || !strcmp(arg, "--include_path"))
{
int ii;
include_path = val;
for (ii = 0; ii < strlen(include_path); ii++)
if (include_path[ii] == '\\')
include_path[ii] = '/';
return 1;
}
if (!strcmp(arg, "--atomics"))
{
atomics = true;
atomic_counter_no = atoi(val);
return 1;
}
if (!strcmp(arg, "---atomic_reductions"))
{
atomic_reductions = true;
return 1;
}
if (!strcmp(arg, "---emi"))
{
emi = true;
return 1;
}
if (!strcmp(arg, "---tg"))
{
tg = true;
return 1;
}
if (!strcmp(arg, "---fake_divergence"))
{
fake_divergence = true;
return 1;
}
if (!strcmp(arg, "---inter_thread_comm"))
{
inter_thread_comm = true;
return 1;
}
if (!strcmp(arg, "---debug"))
{
debug_build = true;
return 1;
}
if (!strcmp(arg, "---disable_fake"))
{
disable_fake = true;
return 1;
}
if (!strcmp(arg, "---disable_atomics"))
{
disable_atomics = true;
return 1;
}
printf("Failed parsing arg %s.", arg);
return 0;
}