forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathim2col.h
123 lines (116 loc) · 5.73 KB
/
im2col.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#ifndef THCUNN_IM2COL_H
#define THCUNN_IM2COL_H
#include "common.h"
#include "THCNumerics.cuh"
// Kernel for fast unfold+copy
// (borrowed from Caffe: https://github.com/BVLC/caffe/blob/master/src/caffe/layers/conv_layer.cu)
template <typename Dtype>
__launch_bounds__(CUDA_NUM_THREADS)
__global__ void im2col_kernel(const int64_t n, const Dtype* data_im,
const int64_t height, const int64_t width,
const int64_t ksize_h, const int64_t ksize_w,
const int64_t pad_h, const int64_t pad_w,
const int64_t stride_h, const int64_t stride_w,
const int64_t dilation_h, const int64_t dilation_w,
const int64_t height_col, const int64_t width_col,
Dtype* data_col) {
CUDA_KERNEL_LOOP(index, n) {
int64_t w_out = index % width_col;
index /= width_col;
int64_t h_out = index % height_col;
int64_t channel_in = index / height_col;
int64_t channel_out = channel_in * ksize_h * ksize_w;
int64_t h_in = h_out * stride_h - pad_h;
int64_t w_in = w_out * stride_w - pad_w;
data_col += (channel_out * height_col + h_out) * width_col + w_out;
data_im += (channel_in * height + h_in) * width + w_in;
for (int64_t i = 0; i < ksize_h; ++i) {
for (int64_t j = 0; j < ksize_w; ++j) {
int64_t h = h_in + i * dilation_h;
int64_t w = w_in + j * dilation_w;
*data_col = (h >= 0 && w >= 0 && h < height && w < width) ?
data_im[i * dilation_h * width + j * dilation_w] : ScalarConvert<int, Dtype>::to(0);
data_col += height_col * width_col;
}
}
}
}
template <typename Dtype>
void im2col(cudaStream_t stream, const Dtype* data_im, const int64_t channels,
const int64_t height, const int64_t width,
const int64_t height_col, const int64_t width_col,
const int64_t ksize_h, const int64_t ksize_w, const int64_t pad_h,
const int64_t pad_w, const int64_t stride_h, const int64_t stride_w,
const int64_t dilation_h, const int64_t dilation_w, Dtype* data_col) {
// We are going to launch channels * height_col * width_col kernels, each
// kernel responsible for copying a single-channel grid.
int64_t num_kernels = channels * height_col * width_col;
// Launch
im2col_kernel <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>> (
num_kernels, data_im, height, width, ksize_h, ksize_w,
pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w,
height_col, width_col, data_col
);
THCudaCheck(cudaGetLastError());
}
template <typename Dtype, typename Acctype>
__launch_bounds__(CUDA_NUM_THREADS)
__global__ void col2im_kernel(const int64_t n, const Dtype* data_col,
const int64_t height, const int64_t width, const int64_t channels,
const int64_t kernel_h, const int64_t kernel_w,
const int64_t pad_h, const int64_t pad_w,
const int64_t stride_h, const int64_t stride_w,
const int64_t dilation_h, const int64_t dilation_w,
const int64_t height_col, const int64_t width_col,
Dtype* data_im) {
CUDA_KERNEL_LOOP(index, n) {
Acctype val = Acctype(0);
const int64_t w_im = index % width + pad_w;
const int64_t h_im = (index / width) % height + pad_h;
const int64_t c_im = index / (width * height);
int64_t kernel_extent_w = (kernel_w - 1) * dilation_w + 1;
int64_t kernel_extent_h = (kernel_h - 1) * dilation_h + 1;
// compute the start and end of the output
const int64_t w_col_start =
(w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1;
const int64_t w_col_end = min(w_im / stride_w + 1, width_col);
const int64_t h_col_start =
(h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1;
const int64_t h_col_end = min(h_im / stride_h + 1, height_col);
// TODO: use LCM of stride and dilation to avoid unnecessary loops
for (int64_t h_col = h_col_start; h_col < h_col_end; h_col += 1) {
for (int64_t w_col = w_col_start; w_col < w_col_end; w_col += 1) {
int64_t h_k = (h_im - h_col * stride_h);
int64_t w_k = (w_im - w_col * stride_w);
if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {
h_k /= dilation_h;
w_k /= dilation_w;
int64_t data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) *
height_col + h_col) * width_col + w_col;
val += data_col[data_col_index];
}
}
}
data_im[index] = ScalarConvert<Acctype, Dtype>::to(val);
}
}
template <typename Dtype, typename Acctype>
void col2im(cudaStream_t stream, const Dtype* data_col, const int64_t channels,
const int64_t height, const int64_t width,
const int64_t output_height, const int64_t output_width,
const int64_t patch_h, const int64_t patch_w, const int64_t pad_h,
const int64_t pad_w, const int64_t stride_h, const int64_t stride_w,
const int64_t dilation_h, const int64_t dilation_w, Dtype* data_im) {
int64_t num_kernels = channels * height * width;
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
col2im_kernel<Dtype, Acctype> <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS, 0, stream>>> (
num_kernels, data_col, height, width, channels,
patch_h, patch_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w,
output_height, output_width, data_im
);
THCudaCheck(cudaGetLastError());
}
#endif