forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
SmoothL1Criterion.cu
91 lines (80 loc) · 2.25 KB
/
SmoothL1Criterion.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#include "THCUNN.h"
#include "common.h"
#include "TH/THHalf.h"
#include "THCHalfAutoNumerics.cuh"
#include "THCThrustAllocator.cuh"
#include "THCApply.cuh"
#include <thrust/fill.h>
#include <thrust/functional.h>
#include <thrust/device_ptr.h>
#include <thrust/reduce.h>
#include <thrust/inner_product.h>
#if CUDA_VERSION >= 7000
#include <thrust/system/cuda/execution_policy.h>
#endif
template <typename Dtype, typename Acctype>
struct smoothl1_functor
{
smoothl1_functor() {}
__host__ __device__ Acctype operator()(const Dtype &x, const Dtype &y) const
{
Acctype z = ScalarConvert<Dtype, Acctype>::to(THCNumerics<Dtype>::abs(x-y));
return z < Acctype(1) ? 0.5f*z*z : z - 0.5f;
}
};
template <typename Dtype>
struct smoothl1_updateOutput_no_reduce_functor
{
smoothl1_updateOutput_no_reduce_functor() {}
__forceinline__ __host__ __device__ void operator()(
const Dtype *x,
const Dtype *y,
Dtype *out) const
{
Dtype oneHalf = ScalarConvert<float, Dtype>::to(0.5f);
Dtype z = THCNumerics<Dtype>::abs(*x - *y);
*out = z < ScalarConvert<int, Dtype>::to(1) ? oneHalf * z * z : z - oneHalf;
}
};
template <typename Dtype>
struct smoothl1_updateGradInput_no_reduce_functor
{
smoothl1_updateGradInput_no_reduce_functor() {}
__host__ __device__ void operator()(
const Dtype *x,
const Dtype *y,
Dtype *gradInput) const
{
Dtype z = *x - *y;
Dtype one = ScalarConvert<int, Dtype>::to(1);
Dtype minusOne = ScalarConvert<int, Dtype>::to(-1);
if (z < minusOne) {
*gradInput = minusOne;
} else if (z > one) {
*gradInput = one;
} else {
*gradInput = z;
}
}
};
template <typename Dtype>
struct smoothl1_updateGradInput_functor
{
const Dtype norm;
const Dtype gradOutput;
smoothl1_updateGradInput_functor(Dtype norm_, Dtype gradOutput_)
: norm(norm_), gradOutput(gradOutput_)
{}
__host__ __device__ Dtype operator()(const Dtype &x, const Dtype &y) const
{
Dtype z = x - y;
if (z < ScalarConvert<int, Dtype>::to(-1))
return -norm * gradOutput;
else if (z > ScalarConvert<int, Dtype>::to(1))
return norm * gradOutput;
else
return norm * z * gradOutput;
}
};
#include "generic/SmoothL1Criterion.cu"
#include "THCGenerateFloatTypes.h"