-
Notifications
You must be signed in to change notification settings - Fork 17.8k
/
sort.go
593 lines (522 loc) · 16.7 KB
/
sort.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:generate go run genzfunc.go
// Package sort provides primitives for sorting slices and user-defined
// collections.
package sort
import "reflect"
// A type, typically a collection, that satisfies sort.Interface can be
// sorted by the routines in this package. The methods require that the
// elements of the collection be enumerated by an integer index.
type Interface interface {
// Len is the number of elements in the collection.
Len() int
// Less reports whether the element with
// index i should sort before the element with index j.
Less(i, j int) bool
// Swap swaps the elements with indexes i and j.
Swap(i, j int)
}
// Insertion sort
func insertionSort(data Interface, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && data.Less(j, j-1); j-- {
data.Swap(j, j-1)
}
}
}
// siftDown implements the heap property on data[lo, hi).
// first is an offset into the array where the root of the heap lies.
func siftDown(data Interface, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && data.Less(first+child, first+child+1) {
child++
}
if !data.Less(first+root, first+child) {
return
}
data.Swap(first+root, first+child)
root = child
}
}
func heapSort(data Interface, a, b int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDown(data, i, hi, first)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data.Swap(first, first+i)
siftDown(data, lo, i, first)
}
}
// Quicksort, loosely following Bentley and McIlroy,
// ``Engineering a Sort Function,'' SP&E November 1993.
// medianOfThree moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
func medianOfThree(data Interface, m1, m0, m2 int) {
// sort 3 elements
if data.Less(m1, m0) {
data.Swap(m1, m0)
}
// data[m0] <= data[m1]
if data.Less(m2, m1) {
data.Swap(m2, m1)
// data[m0] <= data[m2] && data[m1] < data[m2]
if data.Less(m1, m0) {
data.Swap(m1, m0)
}
}
// now data[m0] <= data[m1] <= data[m2]
}
func swapRange(data Interface, a, b, n int) {
for i := 0; i < n; i++ {
data.Swap(a+i, b+i)
}
}
func doPivot(data Interface, lo, hi int) (midlo, midhi int) {
m := lo + (hi-lo)/2 // Written like this to avoid integer overflow.
if hi-lo > 40 {
// Tukey's ``Ninther,'' median of three medians of three.
s := (hi - lo) / 8
medianOfThree(data, lo, lo+s, lo+2*s)
medianOfThree(data, m, m-s, m+s)
medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
}
medianOfThree(data, lo, m, hi-1)
// Invariants are:
// data[lo] = pivot (set up by ChoosePivot)
// data[lo < i < a] < pivot
// data[a <= i < b] <= pivot
// data[b <= i < c] unexamined
// data[c <= i < hi-1] > pivot
// data[hi-1] >= pivot
pivot := lo
a, c := lo+1, hi-1
for ; a < c && data.Less(a, pivot); a++ {
}
b := a
for {
for ; b < c && !data.Less(pivot, b); b++ { // data[b] <= pivot
}
for ; b < c && data.Less(pivot, c-1); c-- { // data[c-1] > pivot
}
if b >= c {
break
}
// data[b] > pivot; data[c-1] <= pivot
data.Swap(b, c-1)
b++
c--
}
// If hi-c<3 then there are duplicates (by property of median of nine).
// Let be a bit more conservative, and set border to 5.
protect := hi-c < 5
if !protect && hi-c < (hi-lo)/4 {
// Lets test some points for equality to pivot
dups := 0
if !data.Less(pivot, hi-1) { // data[hi-1] = pivot
data.Swap(c, hi-1)
c++
dups++
}
if !data.Less(b-1, pivot) { // data[b-1] = pivot
b--
dups++
}
// m-lo = (hi-lo)/2 > 6
// b-lo > (hi-lo)*3/4-1 > 8
// ==> m < b ==> data[m] <= pivot
if !data.Less(m, pivot) { // data[m] = pivot
data.Swap(m, b-1)
b--
dups++
}
// if at least 2 points are equal to pivot, assume skewed distribution
protect = dups > 1
}
if protect {
// Protect against a lot of duplicates
// Add invariant:
// data[a <= i < b] unexamined
// data[b <= i < c] = pivot
for {
for ; a < b && !data.Less(b-1, pivot); b-- { // data[b] == pivot
}
for ; a < b && data.Less(a, pivot); a++ { // data[a] < pivot
}
if a >= b {
break
}
// data[a] == pivot; data[b-1] < pivot
data.Swap(a, b-1)
a++
b--
}
}
// Swap pivot into middle
data.Swap(pivot, b-1)
return b - 1, c
}
func quickSort(data Interface, a, b, maxDepth int) {
for b-a > 12 { // Use ShellSort for slices <= 12 elements
if maxDepth == 0 {
heapSort(data, a, b)
return
}
maxDepth--
mlo, mhi := doPivot(data, a, b)
// Avoiding recursion on the larger subproblem guarantees
// a stack depth of at most lg(b-a).
if mlo-a < b-mhi {
quickSort(data, a, mlo, maxDepth)
a = mhi // i.e., quickSort(data, mhi, b)
} else {
quickSort(data, mhi, b, maxDepth)
b = mlo // i.e., quickSort(data, a, mlo)
}
}
if b-a > 1 {
// Do ShellSort pass with gap 6
// It could be written in this simplified form cause b-a <= 12
for i := a + 6; i < b; i++ {
if data.Less(i, i-6) {
data.Swap(i, i-6)
}
}
insertionSort(data, a, b)
}
}
// Sort sorts data.
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
func Sort(data Interface) {
n := data.Len()
quickSort(data, 0, n, maxDepth(n))
}
// maxDepth returns a threshold at which quicksort should switch
// to heapsort. It returns 2*ceil(lg(n+1)).
func maxDepth(n int) int {
var depth int
for i := n; i > 0; i >>= 1 {
depth++
}
return depth * 2
}
// lessSwap is a pair of Less and Swap function for use with the
// auto-generated func-optimized variant of sort.go in
// zfuncversion.go.
type lessSwap struct {
Less func(i, j int) bool
Swap func(i, j int)
}
// Slice sorts the provided slice given the provided less function.
//
// The sort is not guaranteed to be stable. For a stable sort, use
// SliceStable.
//
// The function panics if the provided interface is not a slice.
func Slice(slice interface{}, less func(i, j int) bool) {
rv := reflect.ValueOf(slice)
swap := reflect.Swapper(slice)
length := rv.Len()
quickSort_func(lessSwap{less, swap}, 0, length, maxDepth(length))
}
// SliceStable sorts the provided slice given the provided less
// function while keeping the original order of equal elements.
//
// The function panics if the provided interface is not a slice.
func SliceStable(slice interface{}, less func(i, j int) bool) {
rv := reflect.ValueOf(slice)
swap := reflect.Swapper(slice)
stable_func(lessSwap{less, swap}, rv.Len())
}
// SliceIsSorted tests whether a slice is sorted.
//
// The function panics if the provided interface is not a slice.
func SliceIsSorted(slice interface{}, less func(i, j int) bool) bool {
rv := reflect.ValueOf(slice)
n := rv.Len()
for i := n - 1; i > 0; i-- {
if less(i, i-1) {
return false
}
}
return true
}
type reverse struct {
// This embedded Interface permits Reverse to use the methods of
// another Interface implementation.
Interface
}
// Less returns the opposite of the embedded implementation's Less method.
func (r reverse) Less(i, j int) bool {
return r.Interface.Less(j, i)
}
// Reverse returns the reverse order for data.
func Reverse(data Interface) Interface {
return &reverse{data}
}
// IsSorted reports whether data is sorted.
func IsSorted(data Interface) bool {
n := data.Len()
for i := n - 1; i > 0; i-- {
if data.Less(i, i-1) {
return false
}
}
return true
}
// Convenience types for common cases
// IntSlice attaches the methods of Interface to []int, sorting in increasing order.
type IntSlice []int
func (p IntSlice) Len() int { return len(p) }
func (p IntSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p IntSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Sort is a convenience method.
func (p IntSlice) Sort() { Sort(p) }
// Float64Slice attaches the methods of Interface to []float64, sorting in increasing order.
type Float64Slice []float64
func (p Float64Slice) Len() int { return len(p) }
func (p Float64Slice) Less(i, j int) bool { return p[i] < p[j] || isNaN(p[i]) && !isNaN(p[j]) }
func (p Float64Slice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// isNaN is a copy of math.IsNaN to avoid a dependency on the math package.
func isNaN(f float64) bool {
return f != f
}
// Sort is a convenience method.
func (p Float64Slice) Sort() { Sort(p) }
// StringSlice attaches the methods of Interface to []string, sorting in increasing order.
type StringSlice []string
func (p StringSlice) Len() int { return len(p) }
func (p StringSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p StringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Sort is a convenience method.
func (p StringSlice) Sort() { Sort(p) }
// Convenience wrappers for common cases
// Ints sorts a slice of ints in increasing order.
func Ints(a []int) { Sort(IntSlice(a)) }
// Float64s sorts a slice of float64s in increasing order.
func Float64s(a []float64) { Sort(Float64Slice(a)) }
// Strings sorts a slice of strings in increasing order.
func Strings(a []string) { Sort(StringSlice(a)) }
// IntsAreSorted tests whether a slice of ints is sorted in increasing order.
func IntsAreSorted(a []int) bool { return IsSorted(IntSlice(a)) }
// Float64sAreSorted tests whether a slice of float64s is sorted in increasing order.
func Float64sAreSorted(a []float64) bool { return IsSorted(Float64Slice(a)) }
// StringsAreSorted tests whether a slice of strings is sorted in increasing order.
func StringsAreSorted(a []string) bool { return IsSorted(StringSlice(a)) }
// Notes on stable sorting:
// The used algorithms are simple and provable correct on all input and use
// only logarithmic additional stack space. They perform well if compared
// experimentally to other stable in-place sorting algorithms.
//
// Remarks on other algorithms evaluated:
// - GCC's 4.6.3 stable_sort with merge_without_buffer from libstdc++:
// Not faster.
// - GCC's __rotate for block rotations: Not faster.
// - "Practical in-place mergesort" from Jyrki Katajainen, Tomi A. Pasanen
// and Jukka Teuhola; Nordic Journal of Computing 3,1 (1996), 27-40:
// The given algorithms are in-place, number of Swap and Assignments
// grow as n log n but the algorithm is not stable.
// - "Fast Stable In-Place Sorting with O(n) Data Moves" J.I. Munro and
// V. Raman in Algorithmica (1996) 16, 115-160:
// This algorithm either needs additional 2n bits or works only if there
// are enough different elements available to encode some permutations
// which have to be undone later (so not stable on any input).
// - All the optimal in-place sorting/merging algorithms I found are either
// unstable or rely on enough different elements in each step to encode the
// performed block rearrangements. See also "In-Place Merging Algorithms",
// Denham Coates-Evely, Department of Computer Science, Kings College,
// January 2004 and the references in there.
// - Often "optimal" algorithms are optimal in the number of assignments
// but Interface has only Swap as operation.
// Stable sorts data while keeping the original order of equal elements.
//
// It makes one call to data.Len to determine n, O(n*log(n)) calls to
// data.Less and O(n*log(n)*log(n)) calls to data.Swap.
func Stable(data Interface) {
stable(data, data.Len())
}
func stable(data Interface, n int) {
blockSize := 20 // must be > 0
a, b := 0, blockSize
for b <= n {
insertionSort(data, a, b)
a = b
b += blockSize
}
insertionSort(data, a, n)
for blockSize < n {
a, b = 0, 2*blockSize
for b <= n {
symMerge(data, a, a+blockSize, b)
a = b
b += 2 * blockSize
}
if m := a + blockSize; m < n {
symMerge(data, a, m, n)
}
blockSize *= 2
}
}
// SymMerge merges the two sorted subsequences data[a:m] and data[m:b] using
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
// Computer Science, pages 714-723. Springer, 2004.
//
// Let M = m-a and N = b-n. Wolog M < N.
// The recursion depth is bound by ceil(log(N+M)).
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
//
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
// in the paper carries through for Swap operations, especially as the block
// swapping rotate uses only O(M+N) Swaps.
//
// symMerge assumes non-degenerate arguments: a < m && m < b.
// Having the caller check this condition eliminates many leaf recursion calls,
// which improves performance.
func symMerge(data Interface, a, m, b int) {
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[a] into data[m:b]
// if data[a:m] only contains one element.
if m-a == 1 {
// Use binary search to find the lowest index i
// such that data[i] >= data[a] for m <= i < b.
// Exit the search loop with i == b in case no such index exists.
i := m
j := b
for i < j {
h := i + (j-i)/2
if data.Less(h, a) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[a] reaches the position before i.
for k := a; k < i-1; k++ {
data.Swap(k, k+1)
}
return
}
// Avoid unnecessary recursions of symMerge
// by direct insertion of data[m] into data[a:m]
// if data[m:b] only contains one element.
if b-m == 1 {
// Use binary search to find the lowest index i
// such that data[i] > data[m] for a <= i < m.
// Exit the search loop with i == m in case no such index exists.
i := a
j := m
for i < j {
h := i + (j-i)/2
if !data.Less(m, h) {
i = h + 1
} else {
j = h
}
}
// Swap values until data[m] reaches the position i.
for k := m; k > i; k-- {
data.Swap(k, k-1)
}
return
}
mid := a + (b-a)/2
n := mid + m
var start, r int
if m > mid {
start = n - b
r = mid
} else {
start = a
r = m
}
p := n - 1
for start < r {
c := start + (r-start)/2
if !data.Less(p-c, c) {
start = c + 1
} else {
r = c
}
}
end := n - start
if start < m && m < end {
rotate(data, start, m, end)
}
if a < start && start < mid {
symMerge(data, a, start, mid)
}
if mid < end && end < b {
symMerge(data, mid, end, b)
}
}
// Rotate two consecutives blocks u = data[a:m] and v = data[m:b] in data:
// Data of the form 'x u v y' is changed to 'x v u y'.
// Rotate performs at most b-a many calls to data.Swap.
// Rotate assumes non-degenerate arguments: a < m && m < b.
func rotate(data Interface, a, m, b int) {
i := m - a
j := b - m
for i != j {
if i > j {
swapRange(data, m-i, m, j)
i -= j
} else {
swapRange(data, m-i, m+j-i, i)
j -= i
}
}
// i == j
swapRange(data, m-i, m, i)
}
/*
Complexity of Stable Sorting
Complexity of block swapping rotation
Each Swap puts one new element into its correct, final position.
Elements which reach their final position are no longer moved.
Thus block swapping rotation needs |u|+|v| calls to Swaps.
This is best possible as each element might need a move.
Pay attention when comparing to other optimal algorithms which
typically count the number of assignments instead of swaps:
E.g. the optimal algorithm of Dudzinski and Dydek for in-place
rotations uses O(u + v + gcd(u,v)) assignments which is
better than our O(3 * (u+v)) as gcd(u,v) <= u.
Stable sorting by SymMerge and BlockSwap rotations
SymMerg complexity for same size input M = N:
Calls to Less: O(M*log(N/M+1)) = O(N*log(2)) = O(N)
Calls to Swap: O((M+N)*log(M)) = O(2*N*log(N)) = O(N*log(N))
(The following argument does not fuzz over a missing -1 or
other stuff which does not impact the final result).
Let n = data.Len(). Assume n = 2^k.
Plain merge sort performs log(n) = k iterations.
On iteration i the algorithm merges 2^(k-i) blocks, each of size 2^i.
Thus iteration i of merge sort performs:
Calls to Less O(2^(k-i) * 2^i) = O(2^k) = O(2^log(n)) = O(n)
Calls to Swap O(2^(k-i) * 2^i * log(2^i)) = O(2^k * i) = O(n*i)
In total k = log(n) iterations are performed; so in total:
Calls to Less O(log(n) * n)
Calls to Swap O(n + 2*n + 3*n + ... + (k-1)*n + k*n)
= O((k/2) * k * n) = O(n * k^2) = O(n * log^2(n))
Above results should generalize to arbitrary n = 2^k + p
and should not be influenced by the initial insertion sort phase:
Insertion sort is O(n^2) on Swap and Less, thus O(bs^2) per block of
size bs at n/bs blocks: O(bs*n) Swaps and Less during insertion sort.
Merge sort iterations start at i = log(bs). With t = log(bs) constant:
Calls to Less O((log(n)-t) * n + bs*n) = O(log(n)*n + (bs-t)*n)
= O(n * log(n))
Calls to Swap O(n * log^2(n) - (t^2+t)/2*n) = O(n * log^2(n))
*/