-
Notifications
You must be signed in to change notification settings - Fork 17.8k
/
color.go
330 lines (289 loc) · 7.49 KB
/
color.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package color implements a basic color library.
package color
// Color can convert itself to alpha-premultiplied 16-bits per channel RGBA.
// The conversion may be lossy.
type Color interface {
// RGBA returns the alpha-premultiplied red, green, blue and alpha values
// for the color. Each value ranges within [0, 0xffff], but is represented
// by a uint32 so that multiplying by a blend factor up to 0xffff will not
// overflow.
//
// An alpha-premultiplied color component c has been scaled by alpha (a),
// so has valid values 0 <= c <= a.
RGBA() (r, g, b, a uint32)
}
// RGBA represents a traditional 32-bit alpha-premultiplied color, having 8
// bits for each of red, green, blue and alpha.
//
// An alpha-premultiplied color component C has been scaled by alpha (A), so
// has valid values 0 <= C <= A.
type RGBA struct {
R, G, B, A uint8
}
func (c RGBA) RGBA() (r, g, b, a uint32) {
r = uint32(c.R)
r |= r << 8
g = uint32(c.G)
g |= g << 8
b = uint32(c.B)
b |= b << 8
a = uint32(c.A)
a |= a << 8
return
}
// RGBA64 represents a 64-bit alpha-premultiplied color, having 16 bits for
// each of red, green, blue and alpha.
//
// An alpha-premultiplied color component C has been scaled by alpha (A), so
// has valid values 0 <= C <= A.
type RGBA64 struct {
R, G, B, A uint16
}
func (c RGBA64) RGBA() (r, g, b, a uint32) {
return uint32(c.R), uint32(c.G), uint32(c.B), uint32(c.A)
}
// NRGBA represents a non-alpha-premultiplied 32-bit color.
type NRGBA struct {
R, G, B, A uint8
}
func (c NRGBA) RGBA() (r, g, b, a uint32) {
r = uint32(c.R)
r |= r << 8
r *= uint32(c.A)
r /= 0xff
g = uint32(c.G)
g |= g << 8
g *= uint32(c.A)
g /= 0xff
b = uint32(c.B)
b |= b << 8
b *= uint32(c.A)
b /= 0xff
a = uint32(c.A)
a |= a << 8
return
}
// NRGBA64 represents a non-alpha-premultiplied 64-bit color,
// having 16 bits for each of red, green, blue and alpha.
type NRGBA64 struct {
R, G, B, A uint16
}
func (c NRGBA64) RGBA() (r, g, b, a uint32) {
r = uint32(c.R)
r *= uint32(c.A)
r /= 0xffff
g = uint32(c.G)
g *= uint32(c.A)
g /= 0xffff
b = uint32(c.B)
b *= uint32(c.A)
b /= 0xffff
a = uint32(c.A)
return
}
// Alpha represents an 8-bit alpha color.
type Alpha struct {
A uint8
}
func (c Alpha) RGBA() (r, g, b, a uint32) {
a = uint32(c.A)
a |= a << 8
return a, a, a, a
}
// Alpha16 represents a 16-bit alpha color.
type Alpha16 struct {
A uint16
}
func (c Alpha16) RGBA() (r, g, b, a uint32) {
a = uint32(c.A)
return a, a, a, a
}
// Gray represents an 8-bit grayscale color.
type Gray struct {
Y uint8
}
func (c Gray) RGBA() (r, g, b, a uint32) {
y := uint32(c.Y)
y |= y << 8
return y, y, y, 0xffff
}
// Gray16 represents a 16-bit grayscale color.
type Gray16 struct {
Y uint16
}
func (c Gray16) RGBA() (r, g, b, a uint32) {
y := uint32(c.Y)
return y, y, y, 0xffff
}
// Model can convert any Color to one from its own color model. The conversion
// may be lossy.
type Model interface {
Convert(c Color) Color
}
// ModelFunc returns a Model that invokes f to implement the conversion.
func ModelFunc(f func(Color) Color) Model {
// Note: using *modelFunc as the implementation
// means that callers can still use comparisons
// like m == RGBAModel. This is not possible if
// we use the func value directly, because funcs
// are no longer comparable.
return &modelFunc{f}
}
type modelFunc struct {
f func(Color) Color
}
func (m *modelFunc) Convert(c Color) Color {
return m.f(c)
}
// Models for the standard color types.
var (
RGBAModel Model = ModelFunc(rgbaModel)
RGBA64Model Model = ModelFunc(rgba64Model)
NRGBAModel Model = ModelFunc(nrgbaModel)
NRGBA64Model Model = ModelFunc(nrgba64Model)
AlphaModel Model = ModelFunc(alphaModel)
Alpha16Model Model = ModelFunc(alpha16Model)
GrayModel Model = ModelFunc(grayModel)
Gray16Model Model = ModelFunc(gray16Model)
)
func rgbaModel(c Color) Color {
if _, ok := c.(RGBA); ok {
return c
}
r, g, b, a := c.RGBA()
return RGBA{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8), uint8(a >> 8)}
}
func rgba64Model(c Color) Color {
if _, ok := c.(RGBA64); ok {
return c
}
r, g, b, a := c.RGBA()
return RGBA64{uint16(r), uint16(g), uint16(b), uint16(a)}
}
func nrgbaModel(c Color) Color {
if _, ok := c.(NRGBA); ok {
return c
}
r, g, b, a := c.RGBA()
if a == 0xffff {
return NRGBA{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8), 0xff}
}
if a == 0 {
return NRGBA{0, 0, 0, 0}
}
// Since Color.RGBA returns a alpha-premultiplied color, we should have r <= a && g <= a && b <= a.
r = (r * 0xffff) / a
g = (g * 0xffff) / a
b = (b * 0xffff) / a
return NRGBA{uint8(r >> 8), uint8(g >> 8), uint8(b >> 8), uint8(a >> 8)}
}
func nrgba64Model(c Color) Color {
if _, ok := c.(NRGBA64); ok {
return c
}
r, g, b, a := c.RGBA()
if a == 0xffff {
return NRGBA64{uint16(r), uint16(g), uint16(b), 0xffff}
}
if a == 0 {
return NRGBA64{0, 0, 0, 0}
}
// Since Color.RGBA returns a alpha-premultiplied color, we should have r <= a && g <= a && b <= a.
r = (r * 0xffff) / a
g = (g * 0xffff) / a
b = (b * 0xffff) / a
return NRGBA64{uint16(r), uint16(g), uint16(b), uint16(a)}
}
func alphaModel(c Color) Color {
if _, ok := c.(Alpha); ok {
return c
}
_, _, _, a := c.RGBA()
return Alpha{uint8(a >> 8)}
}
func alpha16Model(c Color) Color {
if _, ok := c.(Alpha16); ok {
return c
}
_, _, _, a := c.RGBA()
return Alpha16{uint16(a)}
}
func grayModel(c Color) Color {
if _, ok := c.(Gray); ok {
return c
}
r, g, b, _ := c.RGBA()
// These coefficients (the fractions 0.299, 0.587 and 0.114) are the same
// as those given by the JFIF specification and used by func RGBToYCbCr in
// ycbcr.go.
//
// Note that 19595 + 38470 + 7471 equals 65536.
//
// The 24 is 16 + 8. The 16 is the same as used in RGBToYCbCr. The 8 is
// because the return value is 8 bit color, not 16 bit color.
y := (19595*r + 38470*g + 7471*b + 1<<15) >> 24
return Gray{uint8(y)}
}
func gray16Model(c Color) Color {
if _, ok := c.(Gray16); ok {
return c
}
r, g, b, _ := c.RGBA()
// These coefficients (the fractions 0.299, 0.587 and 0.114) are the same
// as those given by the JFIF specification and used by func RGBToYCbCr in
// ycbcr.go.
//
// Note that 19595 + 38470 + 7471 equals 65536.
y := (19595*r + 38470*g + 7471*b + 1<<15) >> 16
return Gray16{uint16(y)}
}
// Palette is a palette of colors.
type Palette []Color
// Convert returns the palette color closest to c in Euclidean R,G,B space.
func (p Palette) Convert(c Color) Color {
if len(p) == 0 {
return nil
}
return p[p.Index(c)]
}
// Index returns the index of the palette color closest to c in Euclidean
// R,G,B,A space.
func (p Palette) Index(c Color) int {
// A batch version of this computation is in image/draw/draw.go.
cr, cg, cb, ca := c.RGBA()
ret, bestSum := 0, uint32(1<<32-1)
for i, v := range p {
vr, vg, vb, va := v.RGBA()
sum := sqDiff(cr, vr) + sqDiff(cg, vg) + sqDiff(cb, vb) + sqDiff(ca, va)
if sum < bestSum {
if sum == 0 {
return i
}
ret, bestSum = i, sum
}
}
return ret
}
// sqDiff returns the squared-difference of x and y, shifted by 2 so that
// adding four of those won't overflow a uint32.
//
// x and y are both assumed to be in the range [0, 0xffff].
func sqDiff(x, y uint32) uint32 {
var d uint32
if x > y {
d = x - y
} else {
d = y - x
}
return (d * d) >> 2
}
// Standard colors.
var (
Black = Gray16{0}
White = Gray16{0xffff}
Transparent = Alpha16{0}
Opaque = Alpha16{0xffff}
)