-
Notifications
You must be signed in to change notification settings - Fork 17.8k
/
Copy pathdeflate.go
746 lines (679 loc) · 20.3 KB
/
deflate.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"errors"
"fmt"
"io"
"math"
)
const (
NoCompression = 0
BestSpeed = 1
BestCompression = 9
DefaultCompression = -1
// HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman
// entropy encoding. This mode is useful in compressing data that has
// already been compressed with an LZ style algorithm (e.g. Snappy or LZ4)
// that lacks an entropy encoder. Compression gains are achieved when
// certain bytes in the input stream occur more frequently than others.
//
// Note that HuffmanOnly produces a compressed output that is
// RFC 1951 compliant. That is, any valid DEFLATE decompressor will
// continue to be able to decompress this output.
HuffmanOnly = -2
)
const (
logWindowSize = 15
windowSize = 1 << logWindowSize
windowMask = windowSize - 1
// The LZ77 step produces a sequence of literal tokens and <length, offset>
// pair tokens. The offset is also known as distance. The underlying wire
// format limits the range of lengths and offsets. For example, there are
// 256 legitimate lengths: those in the range [3, 258]. This package's
// compressor uses a higher minimum match length, enabling optimizations
// such as finding matches via 32-bit loads and compares.
baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5
minMatchLength = 4 // The smallest match length that the compressor actually emits
maxMatchLength = 258 // The largest match length
baseMatchOffset = 1 // The smallest match offset
maxMatchOffset = 1 << 15 // The largest match offset
// The maximum number of tokens we put into a single flate block, just to
// stop things from getting too large.
maxFlateBlockTokens = 1 << 14
maxStoreBlockSize = 65535
hashBits = 17 // After 17 performance degrades
hashSize = 1 << hashBits
hashMask = (1 << hashBits) - 1
maxHashOffset = 1 << 24
skipNever = math.MaxInt32
)
type compressionLevel struct {
level, good, lazy, nice, chain, fastSkipHashing int
}
var levels = []compressionLevel{
{0, 0, 0, 0, 0, 0}, // NoCompression.
{1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go.
// For levels 2-3 we don't bother trying with lazy matches.
{2, 4, 0, 16, 8, 5},
{3, 4, 0, 32, 32, 6},
// Levels 4-9 use increasingly more lazy matching
// and increasingly stringent conditions for "good enough".
{4, 4, 4, 16, 16, skipNever},
{5, 8, 16, 32, 32, skipNever},
{6, 8, 16, 128, 128, skipNever},
{7, 8, 32, 128, 256, skipNever},
{8, 32, 128, 258, 1024, skipNever},
{9, 32, 258, 258, 4096, skipNever},
}
type compressor struct {
compressionLevel
w *huffmanBitWriter
bulkHasher func([]byte, []uint32)
// compression algorithm
fill func(*compressor, []byte) int // copy data to window
step func(*compressor) // process window
sync bool // requesting flush
bestSpeed *deflateFast // Encoder for BestSpeed
// Input hash chains
// hashHead[hashValue] contains the largest inputIndex with the specified hash value
// If hashHead[hashValue] is within the current window, then
// hashPrev[hashHead[hashValue] & windowMask] contains the previous index
// with the same hash value.
chainHead int
hashHead [hashSize]uint32
hashPrev [windowSize]uint32
hashOffset int
// input window: unprocessed data is window[index:windowEnd]
index int
window []byte
windowEnd int
blockStart int // window index where current tokens start
byteAvailable bool // if true, still need to process window[index-1].
// queued output tokens
tokens []token
// deflate state
length int
offset int
maxInsertIndex int
err error
// hashMatch must be able to contain hashes for the maximum match length.
hashMatch [maxMatchLength - 1]uint32
}
func (d *compressor) fillDeflate(b []byte) int {
if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) {
// shift the window by windowSize
copy(d.window, d.window[windowSize:2*windowSize])
d.index -= windowSize
d.windowEnd -= windowSize
if d.blockStart >= windowSize {
d.blockStart -= windowSize
} else {
d.blockStart = math.MaxInt32
}
d.hashOffset += windowSize
if d.hashOffset > maxHashOffset {
delta := d.hashOffset - 1
d.hashOffset -= delta
d.chainHead -= delta
// Iterate over slices instead of arrays to avoid copying
// the entire table onto the stack (Issue #18625).
for i, v := range d.hashPrev[:] {
if int(v) > delta {
d.hashPrev[i] = uint32(int(v) - delta)
} else {
d.hashPrev[i] = 0
}
}
for i, v := range d.hashHead[:] {
if int(v) > delta {
d.hashHead[i] = uint32(int(v) - delta)
} else {
d.hashHead[i] = 0
}
}
}
}
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
func (d *compressor) writeBlock(tokens []token, index int) error {
if index > 0 {
var window []byte
if d.blockStart <= index {
window = d.window[d.blockStart:index]
}
d.blockStart = index
d.w.writeBlock(tokens, false, window)
return d.w.err
}
return nil
}
// fillWindow will fill the current window with the supplied
// dictionary and calculate all hashes.
// This is much faster than doing a full encode.
// Should only be used after a reset.
func (d *compressor) fillWindow(b []byte) {
// Do not fill window if we are in store-only mode.
if d.compressionLevel.level < 2 {
return
}
if d.index != 0 || d.windowEnd != 0 {
panic("internal error: fillWindow called with stale data")
}
// If we are given too much, cut it.
if len(b) > windowSize {
b = b[len(b)-windowSize:]
}
// Add all to window.
n := copy(d.window, b)
// Calculate 256 hashes at the time (more L1 cache hits)
loops := (n + 256 - minMatchLength) / 256
for j := 0; j < loops; j++ {
index := j * 256
end := index + 256 + minMatchLength - 1
if end > n {
end = n
}
toCheck := d.window[index:end]
dstSize := len(toCheck) - minMatchLength + 1
if dstSize <= 0 {
continue
}
dst := d.hashMatch[:dstSize]
d.bulkHasher(toCheck, dst)
for i, val := range dst {
di := i + index
hh := &d.hashHead[val&hashMask]
// Get previous value with the same hash.
// Our chain should point to the previous value.
d.hashPrev[di&windowMask] = *hh
// Set the head of the hash chain to us.
*hh = uint32(di + d.hashOffset)
}
}
// Update window information.
d.windowEnd = n
d.index = n
}
// Try to find a match starting at index whose length is greater than prevSize.
// We only look at chainCount possibilities before giving up.
func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) {
minMatchLook := maxMatchLength
if lookahead < minMatchLook {
minMatchLook = lookahead
}
win := d.window[0 : pos+minMatchLook]
// We quit when we get a match that's at least nice long
nice := len(win) - pos
if d.nice < nice {
nice = d.nice
}
// If we've got a match that's good enough, only look in 1/4 the chain.
tries := d.chain
length = prevLength
if length >= d.good {
tries >>= 2
}
wEnd := win[pos+length]
wPos := win[pos:]
minIndex := pos - windowSize
for i := prevHead; tries > 0; tries-- {
if wEnd == win[i+length] {
n := matchLen(win[i:], wPos, minMatchLook)
if n > length && (n > minMatchLength || pos-i <= 4096) {
length = n
offset = pos - i
ok = true
if n >= nice {
// The match is good enough that we don't try to find a better one.
break
}
wEnd = win[pos+n]
}
}
if i == minIndex {
// hashPrev[i & windowMask] has already been overwritten, so stop now.
break
}
i = int(d.hashPrev[i&windowMask]) - d.hashOffset
if i < minIndex || i < 0 {
break
}
}
return
}
func (d *compressor) writeStoredBlock(buf []byte) error {
if d.w.writeStoredHeader(len(buf), false); d.w.err != nil {
return d.w.err
}
d.w.writeBytes(buf)
return d.w.err
}
const hashmul = 0x1e35a7bd
// hash4 returns a hash representation of the first 4 bytes
// of the supplied slice.
// The caller must ensure that len(b) >= 4.
func hash4(b []byte) uint32 {
return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits)
}
// bulkHash4 will compute hashes using the same
// algorithm as hash4.
func bulkHash4(b []byte, dst []uint32) {
if len(b) < minMatchLength {
return
}
hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24
dst[0] = (hb * hashmul) >> (32 - hashBits)
end := len(b) - minMatchLength + 1
for i := 1; i < end; i++ {
hb = (hb << 8) | uint32(b[i+3])
dst[i] = (hb * hashmul) >> (32 - hashBits)
}
}
// matchLen returns the number of matching bytes in a and b
// up to length 'max'. Both slices must be at least 'max'
// bytes in size.
func matchLen(a, b []byte, max int) int {
a = a[:max]
b = b[:len(a)]
for i, av := range a {
if b[i] != av {
return i
}
}
return max
}
// encSpeed will compress and store the currently added data,
// if enough has been accumulated or we at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) encSpeed() {
// We only compress if we have maxStoreBlockSize.
if d.windowEnd < maxStoreBlockSize {
if !d.sync {
return
}
// Handle small sizes.
if d.windowEnd < 128 {
switch {
case d.windowEnd == 0:
return
case d.windowEnd <= 16:
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
default:
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
d.err = d.w.err
}
d.windowEnd = 0
d.bestSpeed.reset()
return
}
}
// Encode the block.
d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd])
// If we removed less than 1/16th, Huffman compress the block.
if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) {
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
} else {
d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd])
}
d.err = d.w.err
d.windowEnd = 0
}
func (d *compressor) initDeflate() {
d.window = make([]byte, 2*windowSize)
d.hashOffset = 1
d.tokens = make([]token, 0, maxFlateBlockTokens+1)
d.length = minMatchLength - 1
d.offset = 0
d.byteAvailable = false
d.index = 0
d.chainHead = -1
d.bulkHasher = bulkHash4
}
func (d *compressor) deflate() {
if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync {
return
}
d.maxInsertIndex = d.windowEnd - (minMatchLength - 1)
Loop:
for {
if d.index > d.windowEnd {
panic("index > windowEnd")
}
lookahead := d.windowEnd - d.index
if lookahead < minMatchLength+maxMatchLength {
if !d.sync {
break Loop
}
if d.index > d.windowEnd {
panic("index > windowEnd")
}
if lookahead == 0 {
// Flush current output block if any.
if d.byteAvailable {
// There is still one pending token that needs to be flushed
d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1])))
d.byteAvailable = false
}
if len(d.tokens) > 0 {
if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
return
}
d.tokens = d.tokens[:0]
}
break Loop
}
}
if d.index < d.maxInsertIndex {
// Update the hash
hash := hash4(d.window[d.index : d.index+minMatchLength])
hh := &d.hashHead[hash&hashMask]
d.chainHead = int(*hh)
d.hashPrev[d.index&windowMask] = uint32(d.chainHead)
*hh = uint32(d.index + d.hashOffset)
}
prevLength := d.length
prevOffset := d.offset
d.length = minMatchLength - 1
d.offset = 0
minIndex := d.index - windowSize
if minIndex < 0 {
minIndex = 0
}
if d.chainHead-d.hashOffset >= minIndex &&
(d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 ||
d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) {
if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok {
d.length = newLength
d.offset = newOffset
}
}
if d.fastSkipHashing != skipNever && d.length >= minMatchLength ||
d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength {
// There was a match at the previous step, and the current match is
// not better. Output the previous match.
if d.fastSkipHashing != skipNever {
d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset)))
} else {
d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset)))
}
// Insert in the hash table all strings up to the end of the match.
// index and index-1 are already inserted. If there is not enough
// lookahead, the last two strings are not inserted into the hash
// table.
if d.length <= d.fastSkipHashing {
var newIndex int
if d.fastSkipHashing != skipNever {
newIndex = d.index + d.length
} else {
newIndex = d.index + prevLength - 1
}
index := d.index
for index++; index < newIndex; index++ {
if index < d.maxInsertIndex {
hash := hash4(d.window[index : index+minMatchLength])
// Get previous value with the same hash.
// Our chain should point to the previous value.
hh := &d.hashHead[hash&hashMask]
d.hashPrev[index&windowMask] = *hh
// Set the head of the hash chain to us.
*hh = uint32(index + d.hashOffset)
}
}
d.index = index
if d.fastSkipHashing == skipNever {
d.byteAvailable = false
d.length = minMatchLength - 1
}
} else {
// For matches this long, we don't bother inserting each individual
// item into the table.
d.index += d.length
}
if len(d.tokens) == maxFlateBlockTokens {
// The block includes the current character
if d.err = d.writeBlock(d.tokens, d.index); d.err != nil {
return
}
d.tokens = d.tokens[:0]
}
} else {
if d.fastSkipHashing != skipNever || d.byteAvailable {
i := d.index - 1
if d.fastSkipHashing != skipNever {
i = d.index
}
d.tokens = append(d.tokens, literalToken(uint32(d.window[i])))
if len(d.tokens) == maxFlateBlockTokens {
if d.err = d.writeBlock(d.tokens, i+1); d.err != nil {
return
}
d.tokens = d.tokens[:0]
}
}
d.index++
if d.fastSkipHashing == skipNever {
d.byteAvailable = true
}
}
}
}
func (d *compressor) fillStore(b []byte) int {
n := copy(d.window[d.windowEnd:], b)
d.windowEnd += n
return n
}
func (d *compressor) store() {
if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) {
d.err = d.writeStoredBlock(d.window[:d.windowEnd])
d.windowEnd = 0
}
}
// storeHuff compresses and stores the currently added data
// when the d.window is full or we are at the end of the stream.
// Any error that occurred will be in d.err
func (d *compressor) storeHuff() {
if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 {
return
}
d.w.writeBlockHuff(false, d.window[:d.windowEnd])
d.err = d.w.err
d.windowEnd = 0
}
func (d *compressor) write(b []byte) (n int, err error) {
if d.err != nil {
return 0, d.err
}
n = len(b)
for len(b) > 0 {
d.step(d)
b = b[d.fill(d, b):]
if d.err != nil {
return 0, d.err
}
}
return n, nil
}
func (d *compressor) syncFlush() error {
if d.err != nil {
return d.err
}
d.sync = true
d.step(d)
if d.err == nil {
d.w.writeStoredHeader(0, false)
d.w.flush()
d.err = d.w.err
}
d.sync = false
return d.err
}
func (d *compressor) init(w io.Writer, level int) (err error) {
d.w = newHuffmanBitWriter(w)
switch {
case level == NoCompression:
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillStore
d.step = (*compressor).store
case level == HuffmanOnly:
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillStore
d.step = (*compressor).storeHuff
case level == BestSpeed:
d.compressionLevel = levels[level]
d.window = make([]byte, maxStoreBlockSize)
d.fill = (*compressor).fillStore
d.step = (*compressor).encSpeed
d.bestSpeed = newDeflateFast()
d.tokens = make([]token, maxStoreBlockSize)
case level == DefaultCompression:
level = 6
fallthrough
case 2 <= level && level <= 9:
d.compressionLevel = levels[level]
d.initDeflate()
d.fill = (*compressor).fillDeflate
d.step = (*compressor).deflate
default:
return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level)
}
return nil
}
func (d *compressor) reset(w io.Writer) {
d.w.reset(w)
d.sync = false
d.err = nil
switch d.compressionLevel.level {
case NoCompression:
d.windowEnd = 0
case BestSpeed:
d.windowEnd = 0
d.tokens = d.tokens[:0]
d.bestSpeed.reset()
default:
d.chainHead = -1
for i := range d.hashHead {
d.hashHead[i] = 0
}
for i := range d.hashPrev {
d.hashPrev[i] = 0
}
d.hashOffset = 1
d.index, d.windowEnd = 0, 0
d.blockStart, d.byteAvailable = 0, false
d.tokens = d.tokens[:0]
d.length = minMatchLength - 1
d.offset = 0
d.maxInsertIndex = 0
}
}
func (d *compressor) close() error {
if d.err == errWriterClosed {
return nil
}
if d.err != nil {
return d.err
}
d.sync = true
d.step(d)
if d.err != nil {
return d.err
}
if d.w.writeStoredHeader(0, true); d.w.err != nil {
return d.w.err
}
d.w.flush()
if d.w.err != nil {
return d.w.err
}
d.err = errWriterClosed
return nil
}
// NewWriter returns a new [Writer] compressing data at the given level.
// Following zlib, levels range from 1 ([BestSpeed]) to 9 ([BestCompression]);
// higher levels typically run slower but compress more. Level 0
// ([NoCompression]) does not attempt any compression; it only adds the
// necessary DEFLATE framing.
// Level -1 ([DefaultCompression]) uses the default compression level.
// Level -2 ([HuffmanOnly]) will use Huffman compression only, giving
// a very fast compression for all types of input, but sacrificing considerable
// compression efficiency.
//
// If level is in the range [-2, 9] then the error returned will be nil.
// Otherwise the error returned will be non-nil.
func NewWriter(w io.Writer, level int) (*Writer, error) {
var dw Writer
if err := dw.d.init(w, level); err != nil {
return nil, err
}
return &dw, nil
}
// NewWriterDict is like [NewWriter] but initializes the new
// [Writer] with a preset dictionary. The returned [Writer] behaves
// as if the dictionary had been written to it without producing
// any compressed output. The compressed data written to w
// can only be decompressed by a [Reader] initialized with the
// same dictionary.
func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) {
dw := &dictWriter{w}
zw, err := NewWriter(dw, level)
if err != nil {
return nil, err
}
zw.d.fillWindow(dict)
zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method.
return zw, err
}
type dictWriter struct {
w io.Writer
}
func (w *dictWriter) Write(b []byte) (n int, err error) {
return w.w.Write(b)
}
var errWriterClosed = errors.New("flate: closed writer")
// A Writer takes data written to it and writes the compressed
// form of that data to an underlying writer (see [NewWriter]).
type Writer struct {
d compressor
dict []byte
}
// Write writes data to w, which will eventually write the
// compressed form of data to its underlying writer.
func (w *Writer) Write(data []byte) (n int, err error) {
return w.d.write(data)
}
// Flush flushes any pending data to the underlying writer.
// It is useful mainly in compressed network protocols, to ensure that
// a remote reader has enough data to reconstruct a packet.
// Flush does not return until the data has been written.
// Calling Flush when there is no pending data still causes the [Writer]
// to emit a sync marker of at least 4 bytes.
// If the underlying writer returns an error, Flush returns that error.
//
// In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH.
func (w *Writer) Flush() error {
// For more about flushing:
// https://www.bolet.org/~pornin/deflate-flush.html
return w.d.syncFlush()
}
// Close flushes and closes the writer.
func (w *Writer) Close() error {
return w.d.close()
}
// Reset discards the writer's state and makes it equivalent to
// the result of [NewWriter] or [NewWriterDict] called with dst
// and w's level and dictionary.
func (w *Writer) Reset(dst io.Writer) {
if dw, ok := w.d.w.writer.(*dictWriter); ok {
// w was created with NewWriterDict
dw.w = dst
w.d.reset(dw)
w.d.fillWindow(w.dict)
} else {
// w was created with NewWriter
w.d.reset(dst)
}
}