This repository has been archived by the owner on Feb 22, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 209
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #322 from gnes-ai/incep_encoder
fix(video-decoder): support none spliter
- Loading branch information
Showing
3 changed files
with
86 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
# Tencent is pleased to support the open source community by making GNES available. | ||
# | ||
# Copyright (C) 2019 THL A29 Limited, a Tencent company. All rights reserved. | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import List | ||
|
||
import numpy as np | ||
from PIL import Image | ||
|
||
from ..base import BaseVideoEncoder | ||
from ...helper import batching, get_first_available_gpu | ||
|
||
|
||
class InceptionVideoEncoder(BaseVideoEncoder): | ||
batch_size = 64 | ||
|
||
def __init__(self, | ||
model_dir: str, | ||
select_layer: str = 'PreLogitsFlatten', | ||
*args, | ||
**kwargs): | ||
super().__init__(*args, **kwargs) | ||
self.model_dir = model_dir | ||
self.select_layer = select_layer | ||
self.inception_size_x = 299 | ||
self.inception_size_y = 299 | ||
|
||
def post_init(self): | ||
import tensorflow as tf | ||
from ..image.inception_cores.inception_v4 import inception_v4 | ||
from ..image.inception_cores.inception_utils import inception_arg_scope | ||
import os | ||
os.environ['CUDA_VISIBLE_DEVICES'] = str(get_first_available_gpu()) | ||
|
||
g = tf.Graph() | ||
with g.as_default(): | ||
arg_scope = inception_arg_scope() | ||
inception_v4.default_image_size = self.inception_size_x | ||
self.inputs = tf.placeholder( | ||
tf.float32, | ||
(None, self.inception_size_x, self.inception_size_y, 3)) | ||
|
||
with tf.contrib.slim.arg_scope(arg_scope): | ||
self.logits, self.end_points = inception_v4( | ||
self.inputs, is_training=False, dropout_keep_prob=1.0) | ||
|
||
config = tf.ConfigProto(log_device_placement=False) | ||
if self.on_gpu: | ||
config.gpu_options.allow_growth = True | ||
self.sess = tf.Session(config=config) | ||
self.saver = tf.train.Saver() | ||
self.saver.restore(self.sess, self.model_dir) | ||
|
||
def encode(self, data: List['np.ndarray'], *args, | ||
**kwargs) -> List['np.ndarray']: | ||
v_len = [len(v) for v in data] | ||
pos_start = [0] + [sum(v_len[:i + 1]) for i in range(len(v_len) - 1)] | ||
pos_end = [sum(v_len[:i + 1]) for i in range(len(v_len))] | ||
|
||
_resize = lambda x: np.array(Image.fromarray(x).resize((self.inception_size_x, self.inception_size_y)), dtype=np.float32) * 2 / 255. - 1. | ||
|
||
images = [_resize(im) for v in data for im in v] | ||
|
||
@batching | ||
def _encode(self, data): | ||
_, end_points_ = self.sess.run((self.logits, self.end_points), | ||
feed_dict={self.inputs: data}) | ||
return end_points_[self.select_layer] | ||
|
||
encodes = _encode(self, images).astype(np.float32) | ||
|
||
return [encodes[s:e].copy() for s, e in zip(pos_start, pos_end)] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters