forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
PointwiseOpsKernel.cu
48 lines (42 loc) · 1.65 KB
/
PointwiseOpsKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#include <ATen/Context.h>
#include <ATen/Dispatch.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/PointwiseOps.h>
#include <THC/THCNumerics.cuh>
namespace at { namespace native {
void addcmul_cuda_kernel(TensorIterator& iter, Scalar value) {
AT_DISPATCH_ALL_TYPES_AND(kHalf, iter.dtype(), "addcmul_cuda", [&]() {
auto alpha = value.to<scalar_t>();
gpu_kernel(iter, [alpha]GPU_LAMBDA(scalar_t a, scalar_t b, scalar_t c) -> scalar_t {
return a + alpha * b * c;
});
});
}
void addcdiv_cuda_kernel(TensorIterator& iter, Scalar value) {
AT_DISPATCH_ALL_TYPES_AND(kHalf, iter.dtype(), "addcdiv_cuda", [&]() {
auto alpha = value.to<scalar_t>();
gpu_kernel(iter, [alpha]GPU_LAMBDA(scalar_t a, scalar_t b, scalar_t c) -> scalar_t {
return a + alpha * (b / c);
});
});
}
void smooth_l1_backward_cuda_kernel(TensorIterator& iter, Scalar norm) {
AT_DISPATCH_ALL_TYPES_AND(kHalf, iter.dtype(), "smooth_l1_backward_cuda", [&]() {
auto norm_val = norm.to<scalar_t>();
gpu_kernel(iter, [norm_val]GPU_LAMBDA(scalar_t input, scalar_t target, scalar_t grad_output) -> scalar_t {
const auto x = input - target;
if (x < scalar_t(-1))
return -norm_val * grad_output;
else if (x > scalar_t(1))
return norm_val * grad_output;
else
return norm_val * x * grad_output;
});
});
}
REGISTER_DISPATCH(addcdiv_stub, &addcdiv_cuda_kernel);
REGISTER_DISPATCH(addcmul_stub, &addcmul_cuda_kernel);
REGISTER_DISPATCH(smooth_l1_backward_stub, &smooth_l1_backward_cuda_kernel);
}} // namespace at::native