forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndexing.cpp
418 lines (374 loc) · 15.6 KB
/
Indexing.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// Indexing tensors by by tensors
//
// This corresponds to "advanced indexing" in NumPy. The two operations are:
//
// index(Tensor self, indices) -> Tensor
// index_put_(Tensor self, indices, value, accumulate=false)
//
// The index is a TensorList containg kLong, kBool or kByte tensors or nulls. Byte
// tensors (boolean masks) are expanded to long tensors via nonzero(). Null
// tensors signify that the dimension is not indexed.
//
// All indexes are broadcast together and iterated as *one*. From NumPy:
//
// result[i_1, ..., i_M] == x[ind_1[i_1, ..., i_M], ind_2[i_1, ..., i_M],
// ..., ind_N[i_1, ..., i_M]]
//
// Note 1: ByteTensors expand to index as many dimensions as there are in the
// mask.
//
// Note 2: The behavior is more complicated when the index tensors are not all
// adjacent (e.g. x[[0, 1], :, [2, 3]]). In this case, self and the index
// tensors are transposed to the front: x.transpose(1, 2)[[0, 1], [2, 3]]
//
// The code contains two implementations of indexing. The more efficient
// implementation treats indexing like an elementwise operation over the
// tensors `result`, `x`, `ind_1`, `ind_2`, etc. This implementation does
// not work for index_put_ with accumulate=True. The other implementation
// combines the indexed tensors into a single linear index that is used
// with Tensor.put_. This is used for index_put_ with accumulate=True.
//
// The more efficient implementation takes the following steps for the
// above operation:
//
// 1) Broadcast ind_1, ind_2, ind_3 together to a common shape
// 2) Record x.stride(i) for each indexed dimension `i`
// 3) Replace the indexed subspace of `x` with the shape of the corresponding
// subspace of `result` but with stride 0
// 4) Add dimensions of size 1 to the index tensors (ind_1, ind_2, etc.) so
// that their shape is compatible with the result shape
//
// The CPU or CUDA kernel then computes element-wise over the broadcasted
// and restrided result, x, ind_1, ind_2, etc.:
//
// result[...] = *(&x[...] +
// ind_1[...] * x.stride(1) +
// ind_2[...] * x.stride(2) +
// ...)
//
// where & and * represent the C-style address-of and indirection operations.
#include <ATen/native/Indexing.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/ATen.h>
#include <ATen/NativeFunctions.h>
#include <ATen/ExpandUtils.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/core/EnableNamedTensor.h>
#include <algorithm>
#include <functional>
#include <numeric>
#include <vector>
namespace at { namespace native {
DEFINE_DISPATCH(index_stub);
DEFINE_DISPATCH(index_put_stub);
DEFINE_DISPATCH(index_put_accum_stub);
REGISTER_NO_CPU_DISPATCH(index_put_accum_stub, index_put_accum_fn);
static bool all_strides_match(TensorList tensors) {
AT_ASSERT(tensors.size() >= 1);
auto strides = tensors[0].strides();
for (auto& tensor : tensors.slice(1)) {
if (!strides.equals(tensor.strides())) {
return false;
}
}
return true;
}
static std::string shapes_as_str(TensorList tensors) {
std::ostringstream os;
bool first = true;
for (auto& tensor : tensors) {
if (tensor.defined()) {
if (!first) {
os << ", ";
}
os << tensor.sizes();
first = false;
}
}
return os.str();
}
// Replace indexed dimensions in src with stride 0 and the size of the result tensor.
// The offset in these dimensions is computed by the kernel using the index tensor's
// values and the stride of src. The new shape is not meaningful. It's used to make
// the shape compatible with the result tensor.
static Tensor restride_src(const Tensor& src, int64_t dims_before, int64_t dims_indexed,
IntArrayRef replacement_shape) {
auto shape = DimVector(src.sizes());
auto strides = DimVector(src.strides());
int64_t end = dims_before + dims_indexed;
shape.erase(shape.begin() + dims_before, shape.begin() + end);
strides.erase(strides.begin() + dims_before, strides.begin() + end);
shape.insert(shape.begin() + dims_before, replacement_shape.begin(), replacement_shape.end());
strides.insert(strides.begin() + dims_before, replacement_shape.size(), 0);
return src.as_strided(shape, strides);
}
// Add dimensions of size 1 to an index tensor so that it can be broadcast to the result
// shape and iterated over element-wise like the result tensor and the restrided src.
static Tensor reshape_indexer(const Tensor& index, int64_t dims_before, int64_t dims_after) {
auto orig_shape = index.sizes();
auto shape = DimVector();
shape.append(dims_before, 1);
shape.append(orig_shape.begin(), orig_shape.end());
shape.append(dims_after, 1);
return index.reshape(shape);
}
AdvancedIndex::AdvancedIndex(const Tensor& src, TensorList indices_list)
{
int64_t element_size_bytes = src.element_size();
int64_t dims_before = 0, dims_after = 0, dims_indexed = 0;
IntArrayRef replacement_shape;
for (size_t dim = 0; dim < indices_list.size(); dim++) {
if (!indices_list[dim].defined()) {
if (dims_indexed == 0) {
dims_before++;
} else {
dims_after++;
}
} else {
dims_indexed++;
replacement_shape = indices_list[dim].sizes();
indexed_sizes.push_back(src.size(dim));
indexed_strides.push_back(src.stride(dim) * element_size_bytes);
}
}
// Check if the indexed subspace contains a dim of size 0, but the replacement
// shape does not. This implies that an index is out of bounds, because there
// is no number that's a valid index for an empty tensor. Normally, out of
// bounds is handled in the indexing kernel, but this case fails earlier in
// restride_src with an unhelpful error message.
if (std::find(indexed_sizes.begin(), indexed_sizes.end(), 0) != indexed_sizes.end() &&
std::find(replacement_shape.begin(), replacement_shape.end(), 0) == replacement_shape.end()) {
AT_INDEX_ERROR("index is out of bounds for dimension with size 0");
}
this->dims_before = dims_before;
this->dims_after = dims_after;
this->src = restride_src(src, dims_before, dims_indexed, replacement_shape);
for (auto& index : indices_list) {
if (index.defined()) {
indices.push_back(reshape_indexer(index, dims_before, dims_after));
}
}
// For CUDA tensors, force all index tensors to have the same striding to
// simplify the CUDA kernel.
if (indices.size() >= 2 && this->src.type().device_type() == kCUDA) {
if (!all_strides_match(indices)) {
for (size_t i = 0; i < indices.size(); i++) {
indices[i] = indices[i].contiguous();
}
}
}
}
static AdvancedIndex make_info(Tensor self, TensorList orig) {
checkIndexTensorTypes(orig);
// first expand BoolTensor (masks) or ByteTensor (masks) into 1 or more LongTensors
auto indices = expandTensors(self, orig);
// next broadcast all index tensors together
try {
indices = expand_outplace(indices);
} catch (std::exception& e) {
AT_INDEX_ERROR("shape mismatch: indexing tensors could not be broadcast together"
" with shapes ", shapes_as_str(indices));
}
// add missing null Tensors so that it matches self.dim()
while (indices.size() < (size_t)self.dim()) {
indices.emplace_back();
}
// if the non-null indices are not all adjacent, transpose self and indices
// together so that they're adjacent at the front
if (!hasContiguousSubspace(indices)) {
std::tie(self, indices) = transposeToFront(self, indices);
}
// Ensure indices are on the same device as self
for (size_t i = 0; i < indices.size(); i++) {
if (indices[i].defined() && indices[i].device() != self.device()) {
indices[i] = indices[i].to(self.device());
}
}
return AdvancedIndex(self, indices);
}
static TensorIterator make_index_put_iterator(const AdvancedIndex& info, const Tensor& value) {
if (!is_expandable_to(value.sizes(), info.src.sizes())) {
AT_ERROR("shape mismatch: value tensor of shape ", value.sizes(),
" cannot be broadcast to indexing result of shape ", info.src.sizes());
}
auto iter = TensorIterator();
iter.dont_compute_common_dtype();
iter.dont_resize_outputs();
iter.add_output(info.src);
iter.add_input(value, info.src.device(), info.src.scalar_type());
for (auto& index : info.indices) {
iter.add_input(index);
}
iter.build();
return iter;
}
static TensorIterator make_index_iterator(const AdvancedIndex& info) {
auto iter = TensorIterator();
iter.dont_compute_common_dtype();
iter.add_output(Tensor(), info.src.device(), info.src.scalar_type());
iter.add_input(info.src);
for (auto& index : info.indices) {
iter.add_input(index);
}
iter.build();
return iter;
}
Tensor index(const Tensor & self, TensorList indices) {
if (indices.size() > (size_t)self.dim()) {
AT_INDEX_ERROR("too many indices for tensor of dimension ", self.dim(), " (got ", indices.size(), ")");
}
auto info = make_info(self, indices);
auto iter = make_index_iterator(info);
index_stub(iter.device_type(), iter, info.indexed_sizes, info.indexed_strides);
return iter.output();
}
Tensor index_put(const Tensor & self, TensorList indices, const Tensor & value, bool accumulate) {
return self.clone().index_put_(indices, value, accumulate);
}
Tensor & _index_put_impl_(Tensor & self, TensorList indices, const Tensor & value, const bool accumulate, const bool unsafe) {
if (indices.size() > (size_t)self.dim()) {
AT_INDEX_ERROR("too many indices for tensor of dimension ", self.dim(), " (got ", indices.size(), ")");
}
if (accumulate && self.type().device_type() == kCUDA) {
index_put_accum_stub(self.type().device_type(), self, indices, value, unsafe);
return self;
}
auto info = make_info(self, indices);
auto iter = make_index_put_iterator(info, value);
index_put_stub(iter.device_type(), iter, info.indexed_sizes, info.indexed_strides, accumulate);
return self;
}
Tensor & index_put_(Tensor & self, TensorList indices, const Tensor & value, const bool accumulate) {
return at::_index_put_impl_(self, indices, value, accumulate, /*unsafe=*/false);
}
Tensor & index_copy_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) {
dim = maybe_wrap_dim(dim, self.dim());
if (index.dim() >= 2) {
AT_INDEX_ERROR("index_copy_(): Index should have dimension 1 or 0 (got ", index.dim(), ")");
}
int64_t numIndices = index.numel();
if (source.dim() == 0 && numIndices != 1) {
AT_INDEX_ERROR("index_copy_(): When source is scalar, index should have one element (got ", numIndices, ")");
} else if ((source.dim() != self.dim()) && (source.dim() != 0 && self.dim() != 0)) {
AT_INDEX_ERROR("index_copy_(): When source and destination are not scalars, their dimensionality must match. Source dimensionality (",
source.dim(), "), destination dimensionality (", self.dim(), ")");
}
if (index.scalar_type() != ScalarType::Long) {
AT_INDEX_ERROR("index_copy_(): Expected LongTensor for index");
}
// Check that source and destination slices have the same size
auto selfSlicedSizes = self.sizes().vec();
if (selfSlicedSizes.size() > 0) {
selfSlicedSizes.erase(selfSlicedSizes.begin() + dim);
}
auto sourceSlicedSizes = source.sizes().vec();
if (sourceSlicedSizes.size() > 0) {
sourceSlicedSizes.erase(sourceSlicedSizes.begin() + dim);
}
if (selfSlicedSizes.size() != sourceSlicedSizes.size() ||
!std::equal(selfSlicedSizes.begin(), selfSlicedSizes.end(),
sourceSlicedSizes.begin())) {
std::stringstream ss;
ss << "index_copy_(): Source/destination tensor must have same slice shapes. ";
ss << "Destination slice shape: " << selfSlicedSizes << " at dimension " << dim;
ss << " and source slice shape: " << sourceSlicedSizes << " at dimension 0.";
AT_ERROR(ss.str());
}
if (source.dim() > 0 && numIndices != source.size(dim)) {
AT_INDEX_ERROR(
"index_copy_(): Number of indices (", numIndices, ") should be equal to source.size(dim) (", source.size(dim), ")");
}
return at::_index_copy_(self, dim, index, source);
}
Tensor index_copy(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) {
return self.clone().index_copy_(dim, index, source);
}
Tensor index_add(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) {
return self.clone().index_add_(dim, index, source);
}
Tensor index_fill(const Tensor & self, int64_t dim, const Tensor & index, Scalar source) {
return self.clone().index_fill_(dim, index, source);
}
Tensor index_fill(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) {
return self.clone().index_fill_(dim, index, source);
}
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) {
return self.clone().scatter_(dim, index, source);
}
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, Scalar source) {
return self.clone().scatter_(dim, index, source);
}
Tensor scatter_add(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source) {
return self.clone().scatter_add_(dim, index, source);
}
Tensor masked_scatter(const Tensor & self, const Tensor & mask, const Tensor & source) {
Tensor _mask, _self;
std::tie(_mask, _self) = expand_outplace(mask, self);
return _self.clone().masked_scatter_(_mask, source);
}
Tensor masked_fill(const Tensor & self, const Tensor & mask, Scalar source) {
Tensor result;
#ifdef BUILD_NAMEDTENSOR
auto outnames = namedinference::broadcast_to_outnames(mask, self, "masked_fill");
{
NoNamesGuard guard;
#endif
Tensor _mask, _self;
std::tie(_mask, _self) = expand_outplace(mask, self);
result = _self.clone();
result.masked_fill_(mask, source);
#ifdef BUILD_NAMEDTENSOR
}
namedinference::propagate_names(result, std::move(outnames), /*validate_names=*/false);
#endif
return result;
}
Tensor masked_fill(const Tensor & self, const Tensor & mask, const Tensor & source) {
Tensor result;
#ifdef BUILD_NAMEDTENSOR
auto outnames = namedinference::broadcast_to_outnames(mask, self, "masked_fill");
{
NoNamesGuard guard;
#endif
Tensor _mask, _self;
std::tie(_mask, _self) = expand_outplace(mask, self);
result = _self.clone();
result.masked_fill_(mask, source);
#ifdef BUILD_NAMEDTENSOR
}
namedinference::propagate_names(result, std::move(outnames), /*validate_names=*/false);
#endif
return result;
}
Tensor _gather_sparse_backward(const Tensor& self, int64_t dim, const Tensor& index, const Tensor& grad){
// special case scalar input and/or index
if (self.ndimension() == 0) return at::_sparse_coo_tensor_unsafe(at::empty({0,grad.numel()}, index.options()), grad, self.sizes());
if (grad.ndimension() == 0) return at::_sparse_coo_tensor_unsafe(index.view({1,1}), grad, self.sizes());
Tensor sparse_ind = at::empty({self.ndimension(), grad.numel()}, self.options().dtype(at::kLong));
int64_t n_above = grad.numel();
int64_t n_below = 1;
if (dim < 0) dim += self.ndimension();
for (int i=0; i<self.ndimension(); i++) {
n_above /= grad.size(i);
if (i == dim) {
sparse_ind[i] = index.reshape(-1);
} else {
sparse_ind[i] = at::arange(grad.size(i),self.options().dtype(at::kLong)).unsqueeze(1).expand({grad.size(i), n_above}).reshape(-1).repeat(n_below);
}
n_below *= grad.size(i);
}
return at::_sparse_coo_tensor_unsafe(sparse_ind, grad.reshape(-1), self.sizes());
}
std::vector<Tensor> nonzero_numpy(const Tensor& self) {
// special case scalar for compatibility with numpy:
//
// >>> np.array(5).nonzero()
// (array([0]),)
// >>> np.array(0).nonzero()
// (array([], dtype=int64),)
if (self.dim() == 0) {
return self.unsqueeze(0).nonzero().unbind(1);
}
return self.nonzero().unbind(1);
}
}} // at::native