-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_distributed_engines.py
194 lines (168 loc) · 6.41 KB
/
run_distributed_engines.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
"""
Wrapper to call torch.distributed.launch to run multi-gpu trainings.
Supports two engines: train and extract_features
"""
import logging
import sys
import tempfile
from typing import Any, Callable, List
import torch
from fvcore.common.file_io import PathManager
from hydra.experimental import compose, initialize_config_module
from vissl.data.dataset_catalog import get_data_files
from vissl.engines.extract_features import extract_main
from vissl.engines.train import train_main
from vissl.hooks import ClassyHook, default_hook_generator
from vissl.utils.checkpoint import (
get_checkpoint_folder,
get_resume_checkpoint,
is_training_finished,
)
from vissl.utils.env import set_env_vars
from vissl.utils.hydra_config import AttrDict, convert_to_attrdict, is_hydra_available
from vissl.utils.io import cleanup_dir, copy_data_to_local
from vissl.utils.logger import setup_logging, shutdown_logging
from vissl.utils.misc import get_dist_run_id
from vissl.utils.slurm import get_node_id
def get_available_splits(cfg: AttrDict):
return [key for key in cfg.DATA if key.lower() in ["train", "test"]]
def copy_to_local(cfg: AttrDict):
available_splits = get_available_splits(cfg)
for split in available_splits:
if cfg.DATA[split].COPY_TO_LOCAL_DISK:
dest_dir = cfg.DATA[split]["COPY_DESTINATION_DIR"]
tmp_dest_dir = tempfile.mkdtemp()
data_files, label_files = get_data_files(split, cfg.DATA)
data_files.extend(label_files)
_, output_dir = copy_data_to_local(
data_files, dest_dir, tmp_destination_dir=tmp_dest_dir
)
cfg.DATA[split]["COPY_DESTINATION_DIR"] = output_dir
def cleanup_local_dir(cfg: AttrDict):
available_splits = get_available_splits(cfg)
for split in available_splits:
if cfg.DATA[split].COPY_TO_LOCAL_DISK:
dest_dir = cfg.DATA[split]["COPY_DESTINATION_DIR"]
cleanup_dir(dest_dir)
def launch_distributed(
cfg: AttrDict,
node_id: int,
engine_name: str,
hook_generator: Callable[[Any], List[ClassyHook]],
):
"""
Launch the distributed training across gpus, according to the cfg
Args:
cfg -- VISSL yaml configuration
node_id -- node_id for this node
engine_name -- what engine to run: train or extract_features
hook_generator -- Callback to generate all the ClassyVision hooks for this engine
"""
node_id = get_node_id(node_id)
dist_run_id = get_dist_run_id(cfg, cfg.DISTRIBUTED.NUM_NODES)
world_size = cfg.DISTRIBUTED.NUM_NODES * cfg.DISTRIBUTED.NUM_PROC_PER_NODE
set_env_vars(local_rank=0, node_id=node_id, cfg=cfg)
copy_to_local(cfg)
# given the checkpoint folder, we check that there's not already a final checkpoint
checkpoint_folder = get_checkpoint_folder(cfg)
if is_training_finished(cfg, checkpoint_folder=checkpoint_folder):
logging.info(f"Training already succeeded on node: {node_id}, exiting.")
return
# Get the checkpoint where to load from. The load_checkpoints function will
# automatically take care of detecting whether it's a resume or not.
symlink_checkpoint_path = f"{checkpoint_folder}/checkpoint.torch"
if cfg.CHECKPOINT.USE_SYMLINK_CHECKPOINT_FOR_RESUME and PathManager.exists(
symlink_checkpoint_path
):
checkpoint_path = f"{checkpoint_folder}/checkpoint.torch"
else:
checkpoint_path = get_resume_checkpoint(
cfg, checkpoint_folder=checkpoint_folder
)
try:
if world_size > 1:
torch.multiprocessing.spawn(
_distributed_worker,
nprocs=cfg.DISTRIBUTED.NUM_PROC_PER_NODE,
args=(
cfg,
node_id,
dist_run_id,
engine_name,
checkpoint_path,
checkpoint_folder,
hook_generator,
),
daemon=False,
)
else:
_distributed_worker(
local_rank=0,
cfg=cfg,
node_id=node_id,
dist_run_id=dist_run_id,
engine_name=engine_name,
checkpoint_path=checkpoint_path,
checkpoint_folder=checkpoint_folder,
hook_generator=hook_generator,
)
except (KeyboardInterrupt, RuntimeError) as e:
logging.error("Wrapping up, caught exception: ", e)
if isinstance(e, RuntimeError):
raise e
finally:
cleanup_local_dir(cfg)
logging.info("All Done!")
def _distributed_worker(
local_rank: int,
cfg: AttrDict,
node_id: int,
dist_run_id: str,
engine_name: str,
checkpoint_path: str,
checkpoint_folder: str,
hook_generator: Callable[[Any], List[ClassyHook]],
):
dist_rank = cfg.DISTRIBUTED.NUM_PROC_PER_NODE * node_id + local_rank
if engine_name == "extract_features":
process_main = extract_main
else:
def process_main(cfg, dist_run_id, local_rank, node_id):
train_main(
cfg,
dist_run_id,
checkpoint_path,
checkpoint_folder,
local_rank=local_rank,
node_id=node_id,
hook_generator=hook_generator,
)
logging.info(
f"Spawning process for node_id: {node_id}, local_rank: {local_rank}, "
f"dist_rank: {dist_rank}, dist_run_id: {dist_run_id}"
)
process_main(cfg, dist_run_id, local_rank=local_rank, node_id=node_id)
def hydra_main(overrides: List[Any]):
print(f"####### overrides: {overrides}")
with initialize_config_module(config_module="vissl.config"):
cfg = compose("defaults", overrides=overrides)
setup_logging(__name__)
args, config = convert_to_attrdict(cfg)
launch_distributed(
config,
node_id=args.node_id,
engine_name=args.engine_name,
hook_generator=default_hook_generator,
)
# close the logging streams including the filehandlers
shutdown_logging()
if __name__ == "__main__":
"""
Example usage:
`python tools/run_distributed_engines.py config=test/integration_test/quick_simclr`
"""
overrides = sys.argv[1:]
assert is_hydra_available(), "Make sure to install hydra"
overrides.append("hydra.verbose=true")
hydra_main(overrides=overrides)