forked from lishen/end2end-all-conv
-
Notifications
You must be signed in to change notification settings - Fork 1
/
meta.py
711 lines (648 loc) · 27.5 KB
/
meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
import pandas as pd
import numpy as np
from os import path
class DMMetaManager(object):
'''Class for reading meta data and feeding them to training
'''
def __init__(self,
img_tsv='./metadata/images_crosswalk.tsv',
exam_tsv='./metadata/exams_metadata.tsv',
img_folder='./trainingData',
img_extension='dcm',
exam_df=None):
'''Constructor for DMMetaManager
Args:
img_tsv ([str]): path to the image meta .tsv file.
exam_tsv ([str]): path to the exam meta .tsv file. Default is None
because this file is not available to SC1.
img_folder ([str]): path to the folder where the images are stored.
img_extension ([str]): image file extension. Default is 'dcm'.
'''
if exam_df is None:
def mod_file_path(name):
'''Change file name extension and append folder path.
'''
return path.join(img_folder,
path.splitext(name)[0] + '.' + img_extension)
img_df = pd.read_csv(img_tsv, sep="\t", na_values=['.', '*'])
try:
img_df_indexed = img_df.set_index(['subjectId', 'examIndex'])
except KeyError:
img_df_indexed = img_df.set_index(['subjectId'])
if exam_tsv is not None:
exam_df = pd.read_csv(exam_tsv, sep="\t", na_values=['.', '*'])
exam_df_indexed = exam_df.set_index(['subjectId', 'examIndex'])
self.exam_img_df = exam_df_indexed.join(img_df_indexed)
self.exam_img_df['filename'] = \
self.exam_img_df['filename'].apply(mod_file_path)
else:
img_df_indexed['filename'] = \
img_df_indexed['filename'].apply(mod_file_path)
self.img_df_indexed = img_df_indexed
else:
self.set_exam_df(exam_df)
# Setup CC and MLO view categorization.
# View Description
# *Undetermined yet.
# AT axillary tail *
# CC craniocaudal
# CCID craniocaudal (implant displaced)
# CV cleavage *
# FB from below
# LM 90 lateromedial
# LMO lateromedial oblique
# ML 90 mediolateral
# MLID 90 mediolateral (implant displaced)
# MLO mediolateral oblique
# MLOID mediolateral oblique (implant displaced)
# RL rolled lateral *
# RM rolled medial *
# SIO superior inferior oblique
# XCCL exaggerated craniocaudal lateral
# XCCM exaggerated craniocaudal medial
self.view_cat_dict = {
'CC': 'CC', 'CCID': 'CC', 'FB': 'CC', 'LM': 'CC',
'ML': 'CC', 'MLID': 'CC', 'XCCL': 'CC', 'XCCM': 'CC',
'MLO': 'MLO', 'LMO': 'MLO', 'MLOID': 'MLO', 'SIO': 'MLO'}
def get_exam_df(self):
'''Get exam dataframe
'''
try:
return self.exam_img_df
except AttributeError:
return self.img_df_indexed
def set_exam_df(self, exam_df):
'''Set exam dataframe from external object
'''
if 'cancerL' in exam_df.columns:
self.exam_img_df = exam_df
try:
del self.img_df_indexed
except AttributeError:
pass
else:
self.img_df_indexed = exam_df
try:
del self.exam_img_df
except AttributeError:
pass
def get_flatten_img_list(self, subj_list=None, meta=False):
'''Get image-level training data list
Args:
meta ([bool]): whether to return meta info or not. Default is
False.
'''
img = []
lab = []
for subj_id, ex_idx, exam_dat in self.exam_generator(subj_list):
for idx, dat in exam_dat.iterrows():
img_name = dat['filename']
laterality = dat['laterality']
try:
cancer = dat['cancerL'] if laterality == 'L' else dat['cancerR']
try:
cancer = int(cancer)
except ValueError:
cancer = np.nan
except KeyError:
try:
cancer = int(dat['cancer'])
except KeyError:
cancer = np.nan
img.append(img_name)
lab.append(cancer)
return (img, lab)
def get_info_per_exam(self, exam, flatten_img_list=False, cc_mlo_only=False):
'''Get training-related info for each exam as a dict
Args:
exam (DataFrame): data for an exam.
flatten_img_list ([bool]): whether or not return a flatten image
list for each breast.
Returns:
A dict containing info for each breast: the cancer status for
each breast and the image paths to the CC and MLO views. If an
image is missing, the corresponding path is None.
Notes:
In current implementation, only CC and MLO views are included.
All other meta info are not included.
'''
info = {'L': {}, 'R': {}}
exam_indexed = exam.set_index(['laterality', 'view', 'imageIndex'])
# Determine cancer status.
try:
cancerL = exam_indexed['cancerL'].iloc[0]
cancerR = exam_indexed['cancerR'].iloc[0]
try:
cancerL = int(cancerL)
except ValueError:
cancerL = np.nan
try:
cancerR = int(cancerR)
except ValueError:
cancerR = np.nan
except KeyError:
try:
cancerL = int(exam_indexed.loc['L']['cancer'].iloc[0])
except KeyError:
cancerL = np.nan
try:
cancerR = int(exam_indexed.loc['R']['cancer'].iloc[0])
except KeyError:
cancerR = np.nan
info['L']['cancer'] = cancerL
info['R']['cancer'] = cancerR
if flatten_img_list:
for breast in exam_indexed.index.levels[0]:
info[breast]['img'] = exam_indexed.loc[breast]['filename'].tolist()
elif cc_mlo_only:
try:
info['L']['CC'] = exam_indexed.loc['L'].loc['CC']['filename'].tolist()
except KeyError:
info['L']['CC'] = None
try:
info['R']['CC'] = exam_indexed.loc['R'].loc['CC']['filename'].tolist()
except KeyError:
info['R']['CC'] = None
try:
info['L']['MLO'] = exam_indexed.loc['L'].loc['MLO']['filename'].tolist()
except KeyError:
info['L']['MLO'] = None
try:
info['R']['MLO'] = exam_indexed.loc['R'].loc['MLO']['filename'].tolist()
except KeyError:
info['R']['MLO'] = None
else:
info['L']['CC'] = None
info['R']['CC'] = None
info['L']['MLO'] = None
info['R']['MLO'] = None
for breast in exam_indexed.index.levels[0]:
for view in exam_indexed.loc[breast].index.levels[0]:
if view not in self.view_cat_dict:
continue # skip uncategorized view for now.
view_ = self.view_cat_dict[view]
fname_df = exam_indexed.loc[breast].loc[view][['filename']]
if fname_df.empty:
continue
if info[breast][view_] is None:
info[breast][view_] = fname_df
elif view == 'CC' or view == 'MLO':
# Make sure canonical views are always on top.
info[breast][view_] = fname_df.append(info[breast][view_])
else:
info[breast][view_] = info[breast][view_].append(fname_df)
return info
def subj_generator(self, subj_list=None):
'''A generator for the data of each subject
Args:
subj_list ([list]): a subset list of subject ids.
Returns:
A tuple of (subject ID, the corresponding records of the subject).
'''
try:
df = self.exam_img_df
except AttributeError:
df = self.img_df_indexed
if subj_list is None:
try:
subj_list = df.index.levels[0]
except AttributeError:
subj_list = df.index.unique()
for subj_id in subj_list:
yield (subj_id, df.loc[subj_id])
def exam_generator(self, subj_list=None):
'''A generator for the data of each exam
Returns:
A tuple of (subject ID, exam Index, the corresponding records of
the exam).
Notes:
All exams are flattened. When examIndex is unavailable, the
returned exam index is equal to the subject ID.
'''
for subj_id, subj_dat in self.subj_generator(subj_list):
for ex_idx in subj_dat.index.unique():
yield (subj_id, ex_idx, subj_dat.loc[ex_idx])
def last_exam_generator(self, subj_list=None):
'''A generator for the data of the last exam of each subject
Returns:
A tuple of (subject ID, exam Index, the corresponding records of
the exam).
Notes:
When examIndex is unavailable, the returned exam index is equal to
the subject ID.
'''
for subj_id, subj_dat in self.subj_generator(subj_list):
last_idx = subj_dat.index.max()
yield (subj_id, last_idx, subj_dat.loc[last_idx])
def flatten_2_exam_generator(self, subj_list=None):
'''A generator for the data of the flatten 2 exams of each subject
Returns:
A tuple of (subject ID, current exam Index, current exam data,
prior exam Index, prior exam data). If no prior exam is present,
will return None.
Notes:
This generates all the pairs of the current and the prior exams.
The function is meant for SC2.
'''
for subj_id, subj_dat in self.subj_generator(subj_list):
nb_exam = len(subj_dat.index.unique())
if nb_exam == 1:
yield (subj_id, 1, subj_dat.loc[1], None, None)
else:
for prior_idx in xrange(1, nb_exam):
curr_idx = prior_idx + 1
yield (subj_id, curr_idx, subj_dat.loc[curr_idx],
prior_idx, subj_dat.loc[prior_idx])
def last_2_exam_generator(self, subj_list=None):
'''A generator for the data of the last 2 exams of each subject
Returns:
A tuple of (subject ID, last exam Index, last exam data,
2nd last exam Index, 2nd last exam data). If no prior exam is
present, will return None.
Notes:
The function is meant for SC2.
'''
for subj_id, subj_dat in self.subj_generator(subj_list):
nb_exam = len(subj_dat.index.unique())
if nb_exam == 1:
yield (subj_id, 1, subj_dat.loc[1], None, None)
else:
curr_idx = nb_exam
prior_idx = curr_idx - 1
yield (subj_id, curr_idx, subj_dat.loc[curr_idx],
prior_idx, subj_dat.loc[prior_idx])
def get_flatten_2_exam_dat(self, subj_list=None, pred_tsv=None):
'''Get the info about the flatten 2 exams as a dataframe
Returns:
a tuple of (df, labs) where df is a dataframe of exam pair info
for breasts; labs is the corresponding cancer labels.
'''
rec_list = []
lab_list = []
if pred_tsv is not None:
pred_df = pd.read_csv(pred_tsv, sep="\t")
pred_df = pred_df.set_index(['subjectId', 'examIndex', 'laterality'])
for subj_id, curr_idx, curr_dat, prior_idx, prior_dat in \
self.flatten_2_exam_generator(subj_list):
left_record, right_record = \
DMMetaManager.get_info_exam_pair(curr_dat, prior_dat)
if pred_tsv is not None:
nb_days = left_record['daysSincePreviousExam']
curr_left_score = pred_df.loc[subj_id].loc[curr_idx].loc['L']['confidence']
curr_right_score = pred_df.loc[subj_id].loc[curr_idx].loc['R']['confidence']
try:
prior_left_score = pred_df.loc[subj_id].loc[prior_idx].loc['L']['confidence']
prior_right_score = pred_df.loc[subj_id].loc[prior_idx].loc['R']['confidence']
diff_left_score = (curr_left_score - prior_left_score)/nb_days*365
diff_right_score = (curr_right_score - prior_right_score)/nb_days*365
except TypeError:
prior_left_score = np.nan
prior_right_score = np.nan
diff_left_score = np.nan
diff_right_score = np.nan
left_record = left_record\
.assign(curr_score=curr_left_score)\
.assign(prior_score=prior_left_score)\
.assign(diff_score=diff_left_score)
right_record = right_record\
.assign(curr_score=curr_right_score)\
.assign(prior_score=prior_right_score)\
.assign(diff_score=diff_right_score)
rec_list.append(left_record)
rec_list.append(right_record)
try:
left_cancer = int(curr_dat['cancerL'].iloc[0])
except ValueError:
# left_cancer = np.nan
left_cancer = 0
try:
right_cancer = int(curr_dat['cancerR'].iloc[0])
except ValueError:
# right_cancer = np.nan
right_cancer = 0
lab_list.append(left_cancer)
lab_list.append(right_cancer)
df = pd.concat(rec_list, ignore_index=True)
labs = np.array(lab_list)
return df, labs
def get_subj_dat_list(self, subj_list=None, meta=False):
'''Get subject-level training data list
Returns:
A list of all subjects. Each element is a tuple of (subject ID,
[ (exam Index, extracted exam info), ..., () ] ).
'''
subj_dat_list = []
for subj_id, subj_dat in self.subj_generator(subj_list):
subj_exam_list = []
for ex_idx in subj_dat.index.unique(): # uniq exam indices.
exam_info = self.get_info_per_exam(subj_dat.loc[ex_idx])
subj_exam_list.append( (ex_idx, exam_info) )
subj_dat_list.append( (subj_id, subj_exam_list) )
return subj_dat_list
def get_subj_labs(self):
'''Get subject IDs and their last exam labels
'''
subj_list = []
lab_list = []
for subj_id, ex_idx, exam_dat in self.last_exam_generator():
subj_list.append(subj_id)
try:
cancerL = (exam_dat['cancerL'] == 1).sum() > 0
cancerR = (exam_dat['cancerR'] == 1).sum() > 0
lab_list.append(1 if cancerL or cancerR else 0)
except KeyError:
try:
cancer = (exam_dat['cancer'] == 1).sum() > 0
lab_list.append(1 if cancer else 0)
except KeyError:
lab_list.append(np.nan)
return subj_list, lab_list
def get_flatten_exam_list(self, subj_list=None, meta=False,
flatten_img_list=False, cc_mlo_only=False):
'''Get exam-level training data list
Returns:
A list of all exams for all subjects. Each element is a tuple of
(subject ID, exam Index, a dict of extracted info for the exam).
'''
exam_list = []
for subj_id, ex_idx, exam_dat in self.exam_generator(subj_list):
exam_list.append(
(subj_id, ex_idx,
self.get_info_per_exam(
exam_dat, flatten_img_list=flatten_img_list,
cc_mlo_only=cc_mlo_only))
)
return exam_list
@staticmethod
def get_info_exam_pair(curr_dat, prior_dat):
'''Extract meta info from current and prior exams
Returns:
a tuple of (left_df, right_df), where left_df and right_df are both
dataframes containing meta info about the current and prior exams.
'''
# number of days since last exam.
nb_days = curr_dat['daysSincePreviousExam'].iloc[0]
# prior cancer invasive or not.
try:
left_prior_inv = prior_dat['invL'].iloc[0]
except TypeError:
left_prior_inv = np.nan
try:
right_prior_inv = prior_dat['invR'].iloc[0]
except TypeError:
right_prior_inv = np.nan
# current, prior and diff bmi.
curr_bmi = curr_dat['bmi'].iloc[0]
try:
prior_bmi = prior_dat['bmi'].iloc[0]
diff_bmi = (curr_bmi - prior_bmi)/nb_days*365
except TypeError:
prior_bmi = np.nan
diff_bmi = np.nan
# implantation.
implantNow = curr_dat['implantNow'].iloc[0]
if implantNow == 2:
left_implantNow = 1
right_implantNow = 0
elif implantNow == 1:
left_implantNow = 0
right_implantNow = 1
elif implantNow == 4:
left_implantNow = 1
right_implantNow = 1
elif implantNow == 5:
left_implantNow = .5
right_implantNow = .5
else:
left_implantNow = np.nan
right_implantNow = np.nan
try:
implantPrior = prior_dat['implantNow'].iloc[0]
if implantPrior == 2:
left_implantPrior = 1
right_implantPrior = 0
elif implantPrior == 1:
left_implantPrior = 0
right_implantPrior = 1
elif implantPrior == 4:
left_implantPrior = 1
right_implantPrior = 1
elif implantPrior == 5:
left_implantPrior = .5
right_implantPrior = .5
else:
left_implantPrior = np.nan
right_implantPrior = np.nan
except TypeError:
left_implantPrior = np.nan
right_implantPrior = np.nan
# previous breast cancer history.
previousBcLaterality = curr_dat['previousBcLaterality'].iloc[0]
if previousBcLaterality == 2:
left_previousBcHistory = 1
right_previousBcHistory = 0
elif previousBcLaterality == 1:
left_previousBcHistory = 0
right_previousBcHistory = 1
elif previousBcLaterality == 3:
left_previousBcHistory = .5
right_previousBcHistory = .5
elif previousBcLaterality == 4:
left_previousBcHistory = 1
right_previousBcHistory = 1
else:
left_previousBcHistory = 0
right_previousBcHistory = 0
# breast reduction history.
reduxLaterality = curr_dat['reduxLaterality'].iloc[0]
if reduxLaterality == 2:
left_reduxHistory = 1
right_reduxHistory = 0
elif reduxLaterality == 1:
left_reduxHistory = 0
right_reduxHistory = 1
elif reduxLaterality == 4:
left_reduxHistory = 1
right_reduxHistory = 1
else:
left_reduxHistory = 0
right_reduxHistory = 0
# hormone replacement therapy.
curr_hrt = curr_dat['hrt'].iloc[0]
curr_hrt = np.nan if curr_hrt == 9 else curr_hrt
try:
prior_hrt = prior_dat['hrt'].iloc[0]
prior_hrt = np.nan if prior_hrt == 9 else prior_hrt
except TypeError:
prior_hrt = np.nan
# anti-estrogen therapy.
curr_antiestrogen = curr_dat['antiestrogen'].iloc[0]
curr_antiestrogen = np.nan if curr_antiestrogen == 9 else curr_antiestrogen
try:
prior_antiestrogen = prior_dat['antiestrogen'].iloc[0]
prior_antiestrogen = np.nan if prior_antiestrogen == 9 else prior_antiestrogen
except TypeError:
prior_antiestrogen = np.nan
# first degree relative with BC.
firstDegreeWithBc = curr_dat['firstDegreeWithBc'].iloc[0]
firstDegreeWithBc = np.nan if firstDegreeWithBc == 9 else firstDegreeWithBc
# first degree relative with BC under 50.
firstDegreeWithBc50 = curr_dat['firstDegreeWithBc50'].iloc[0]
firstDegreeWithBc50 = np.nan if firstDegreeWithBc50 == 9 else firstDegreeWithBc50
# race.
race = curr_dat['race'].iloc[0]
race = np.nan if race == 9 else race
# put all info input a dict.
left_record = {
'daysSincePreviousExam': nb_days,
'prior_inv': left_prior_inv,
'age': curr_dat['age'].iloc[0],
'implantEver': curr_dat['implantEver'].iloc[0],
'implantNow': left_implantNow,
'implantPrior': left_implantPrior,
'previousBcHistory': left_previousBcHistory,
'yearsSincePreviousBc': curr_dat['yearsSincePreviousBc'].iloc[0],
'reduxHistory': left_reduxHistory,
'curr_hrt': curr_hrt,
'prior_hrt': prior_hrt,
'curr_antiestrogen': curr_antiestrogen,
'prior_antiestrogen': prior_antiestrogen,
'curr_bmi': curr_bmi,
'prior_bmi': prior_bmi,
'diff_bmi': diff_bmi,
'firstDegreeWithBc': firstDegreeWithBc,
'firstDegreeWithBc50': firstDegreeWithBc50,
'race': race
}
right_record = {
'daysSincePreviousExam': nb_days,
'prior_inv': right_prior_inv,
'age': curr_dat['age'].iloc[0],
'implantEver': curr_dat['implantEver'].iloc[0],
'implantNow': right_implantNow,
'implantPrior': right_implantPrior,
'previousBcHistory': right_previousBcHistory,
'yearsSincePreviousBc': curr_dat['yearsSincePreviousBc'].iloc[0],
'reduxHistory': right_reduxHistory,
'curr_hrt': curr_hrt,
'prior_hrt': prior_hrt,
'curr_antiestrogen': curr_antiestrogen,
'prior_antiestrogen': prior_antiestrogen,
'curr_bmi': curr_bmi,
'prior_bmi': prior_bmi,
'diff_bmi': diff_bmi,
'firstDegreeWithBc': firstDegreeWithBc,
'firstDegreeWithBc50': firstDegreeWithBc50,
'race': race
}
return (pd.DataFrame(left_record, index=[0]),
pd.DataFrame(right_record, index=[0]))
@staticmethod
def exam_labs(exam_list):
return [ 1 if e[2]['L']['cancer']==1 or e[2]['R']['cancer']==1 else 0
for e in exam_list ]
@staticmethod
def flatten_exam_labs(exam_list):
labs = []
for e in exam_list:
lc = e[2]['L']['cancer']
rc = e[2]['R']['cancer']
lc = lc if not np.isnan(lc) else 0
rc = rc if not np.isnan(rc) else 0
labs.append(lc)
labs.append(rc)
return labs
@staticmethod
def exam_list_summary(exam_list):
'''Return a summary dataframe for an exam list
'''
subj_list = []
exid_list = []
l_cc_list = []
l_mlo_list = []
r_cc_list = []
r_mlo_list = []
l_can_list = []
r_can_list = []
def nb_fname(df):
return 0 if df is None else df.shape[0]
for e in exam_list:
subj_list.append(e[0])
exid_list.append(e[1])
l_cc_list.append(nb_fname(e[2]['L']['CC']))
l_mlo_list.append(nb_fname(e[2]['L']['MLO']))
r_cc_list.append(nb_fname(e[2]['R']['CC']))
r_mlo_list.append(nb_fname(e[2]['R']['MLO']))
l_can_list.append(e[2]['L']['cancer'])
r_can_list.append(e[2]['R']['cancer'])
summary_df = pd.DataFrame(
{'subj': subj_list, 'exam': exid_list,
'L_CC': l_cc_list, 'L_MLO': l_mlo_list,
'R_CC': r_cc_list, 'R_MLO': r_mlo_list,
'L_cancer': l_can_list, 'R_cancer': r_can_list})
return summary_df
def get_last_exam_list(self, subj_list=None, meta=False,
flatten_img_list=False, cc_mlo_only=False):
'''Get the last exam training data list
Returns:
A list of the last exams for each subject. Each element is a tuple
of (subject ID, exam Index, a dict of extracted info for the exam).
'''
exam_list = []
for subj_id, ex_idx, exam_dat in self.last_exam_generator(subj_list):
exam_list.append(
(subj_id, ex_idx,
self.get_info_per_exam(
exam_dat, flatten_img_list=flatten_img_list,
cc_mlo_only=cc_mlo_only))
)
return exam_list
@staticmethod
def subset_img_labs(img_list, lab_list, neg_vs_pos_ratio, seed=12345):
rng = np.random.RandomState(seed)
img_list = np.array(img_list)
lab_list = np.array(lab_list)
pos_idx = np.where(lab_list==1)[0]
neg_idx = np.where(lab_list==0)[0]
nb_neg_desired = int(len(pos_idx)*neg_vs_pos_ratio)
if nb_neg_desired < len(neg_idx):
sampled_neg_idx = rng.choice(neg_idx, nb_neg_desired, replace=False)
all_idx = np.concatenate([pos_idx, sampled_neg_idx])
img_list = img_list[all_idx].tolist()
lab_list = lab_list[all_idx].tolist()
return img_list, lab_list
else:
return img_list.tolist(), lab_list.tolist()
@staticmethod
def subset_exam_list(exam_list, neg_vs_pos_ratio, seed=12345):
rng = np.random.RandomState(seed)
exam_labs = np.array(DMMetaManager.exam_labs(exam_list))
pos_idx = np.where(exam_labs==1)[0]
neg_idx = np.where(exam_labs==0)[0]
nb_neg_desired = int(len(pos_idx)*neg_vs_pos_ratio)
if nb_neg_desired < len(neg_idx):
sampled_neg_idx = rng.choice(neg_idx, nb_neg_desired, replace=False)
all_idx = np.concatenate([pos_idx, sampled_neg_idx])
sample_mask = np.zeros(len(exam_list), dtype='bool')
sample_mask[all_idx] = True
sampled_exam_list = [ exam for i,exam in enumerate(exam_list)
if sample_mask[i]]
return sampled_exam_list
else:
return exam_list
@staticmethod
def subset_subj_list(subj_list, subj_labs, neg_vs_pos_ratio, seed=12345):
rng = np.random.RandomState(seed)
subj_list = np.array(subj_list)
subj_labs = np.array(subj_labs)
pos_idx = np.where(subj_labs==1)[0]
neg_idx = np.where(subj_labs==0)[0]
nb_neg_desired = int(len(pos_idx)*neg_vs_pos_ratio)
if nb_neg_desired < len(neg_idx):
sampled_neg_idx = rng.choice(neg_idx, nb_neg_desired, replace=False)
all_idx = np.concatenate([pos_idx, sampled_neg_idx])
subj_list = subj_list[all_idx].tolist()
subj_labs = subj_labs[all_idx].tolist()
return subj_list, subj_labs
else:
return subj_list.tolist(), subj_labs.tolist()