-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnfw.cpp
225 lines (205 loc) · 6.05 KB
/
nfw.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*
* nfw.cpp
*
* These are routines related to the Navarro, Frenk & White profile.
* These routines are limited to properties of the profile and do not
* include properties that depend on the context.
*
* These formula are mostly taken from:
* Navarro, Frenk & White, 1997 ApJ 490, 493
*
* Created on: Mar 28, 2012
* Author: bmetcalf
*/
#include <math.h>
#include <nrD.h>
#include <cosmo.h>
#include <assert.h>
using namespace std;
double vg;
/// Circular velocity at R200 in km/s
double NFW_Utility::NFW_V200(
double M200 /// Mass
,double R200 /// Radius
){
return lightspeed*sqrt(Grav*M200/R200);
}
/// Maximum circular velocity in km/s
double NFW_Utility::NFW_Vmax(
double cons /// concentration = R_200/R_s
,double M200 /// Mass
,double R200 /// Radius
){
double f = log(1+cons) - cons/(1+cons);
return sqrt(0.216*cons/f)*NFW_V200(M200,R200);
}
/// Circular velocity in km/s
double NFW_Utility::NFW_Vr(
double x /// radius , r/R_200
,double cons /// concentration = R_200/R_s
,double M200 /// Mass
,double R200 /// Radius
){
double f = log(1+cons) - cons/(1+cons);
return sqrt( (log(1+cons*x) -cons*x/(1+cons*x) ) /f/x)*NFW_V200(M200,R200);
}
/// Mass within a radius x in Msun
double NFW_Utility::NFW_M(
double x /// radius , r/R_200
,double cons /// concentration = R_200/R_s
,double M200 /// Mass
){
double f = log(1+cons) - cons/(1+cons);
return M200*(log(1+cons*x) -cons*x/(1+cons*x) )/f;
}
/// central over-density of nfw halo
double NFW_Utility::NFW_deltac(
double cons /// concentration = R_200/R_s
){
return 200*cons*cons*cons/3/(log(1+cons)-cons/(1+cons));
}
/// Concentration of NFW given Vmax in km/s
double NFW_Utility::NFW_Concentration(
double Vmax /// Maximum circular velocity
,double M200 /// Mass
,double R200 /// Radius
){
double funcforconcentration(double cons);
//double tmp=NFW_Vmax(1.0,M200,R200);
vg = Vmax/NFW_V200(M200,R200);
if( vg < 1){
std::cout << "ERROR: Vmax is too small in NFW_Utility::Concentration_nfw()" << std::endl;
exit(0);
return 1.0; //// !!!!!!! must change this !!!!!!
}
if(Vmax > NFW_Vmax(1000,M200,R200) ){
std::cout << "ERROR: Vmax is too large in NFW_Utility::Concentration_nfw() concentration will be over 1000" << std::endl;
exit(0);
}
if(Vmax < NFW_Vmax(2.175,M200,R200) ){
std::cout << "ERROR: Vmax is too small in NFW_Utility::Concentration_nfw() concentration will be under 2.175" << std::endl;
exit(0);
}
return zbrentD(&NFW_Utility::funcforconcentration,2.175,1000,1.0e-8);
}
float NFW_Utility::funcforconcentration(float cons){
float f = log(1+cons) - cons/(1+cons);
return vg*vg - 0.216*cons/f;
}
/// The density of an NFW profile in units of the critical density
double NFW_Utility::NFW_rho(
double cons /// concentration = R_200/R_s
,double x /// radius , r/R_200
){
if(x<=0) return 0;
return NFW_deltac(cons)/x/pow(1+x,2);
}
/// Returns the concentration and radius of an NFW halo with the mass, half mass radius and Vmax provided
void NFW_Utility::match_nfw(
float my_Vmax /// Maximum circular velocity (km/s)
,float my_R_half /// Half mass radius (Mpc)
,float my_mass /// Mass (solar masses)
,float *my_cons /// output concentration
,float *my_Rsize /// Radius of halo, Not necessarily R200 or Rvir.
){
//std::cout << "NFW_Utility Test: " << " mass: " << my_mass << " R_half: " << my_R_half << " Vmax: " << my_Vmax << std::endl;
if(my_mass <= 0.0){
*my_cons = 0;
*my_Rsize = 0;
return;
}
assert(my_Vmax > 0.0);
assert(my_R_half > 0.0);
mass = my_mass;
R_half = my_R_half;
Vmax = my_Vmax;
if(nfwfunc(1.0e-4)*nfwfunc(1.0e4) > 0.0){
ERROR_MESSAGE();
std::cout << "ERROR: Vmax, R_half & mass are inconsistent!" << std::endl;
//throw std::runtime_error("ERROR: Vmax, R_half & mass are inconsistent!");
mass = R_half = Vmax = 0.0;
*my_cons = 1.1;
*my_Rsize = 1.0e-30;
}else{
*my_cons = zbrentD(&NFW_Utility::nfwfunc,1.0e-5,1.0e4,1.0e-8);
//std::cout << "NFW_Utility Test: " << nfwfunc(1.0e-4)<< nfwfunc(*my_cons)<< nfwfunc(1.0e4) << " mass: " << mass << " R_half: " << R_half << " Vmax: " << Vmax << std::endl;
*my_Rsize = Rsize(*my_cons,Vmax,mass);
}
assert(*my_Rsize > my_R_half);
}
float NFW_Utility::nfwfunc(float cons){
return 2*g_func(R_half*cons/Rsize(cons,Vmax,mass) ) - g_func(cons);
}
float NFW_Utility::Rsize(float cons,float Vmax,float mass){
return Grav*mass*pow(0.216*lightspeed*cons/Vmax,2);
}
float NFW_Utility::g_func(float x){
return log(1+x) - x/(1+x);
}
float NFW_Utility::zbrentD(MemFunc func, float x1, float x2, float tol){
int iter,ITMAX = 100;
float EPS = 3.0e-8;
float a=x1,b=x2,c=x2,d,e,min1,min2;
float fa=(this->*func)(a),fb=(this->*func)(b),fc,p,q,r,s,tol1,xm;
if ((fa > 0.0 && fb > 0.0) || (fa < 0.0 && fb < 0.0)){
printf("fa=%e fb=%e x1=%e x2=%e\n",fa,fb,x1,x2);
ERROR_MESSAGE();
std::cout << "Root must be bracketed in NFW_Utility::zbrentD" << std::endl;
exit(1);
}
fc=fb;
for (iter=1;iter<=ITMAX;iter++) {
if ((fb > 0.0 && fc > 0.0) || (fb < 0.0 && fc < 0.0)) {
c=a;
fc=fa;
e=d=b-a;
}
if (fabs(fc) < fabs(fb)) {
a=b;
b=c;
c=a;
fa=fb;
fb=fc;
fc=fa;
}
tol1=2.0*EPS*fabs(b)+0.5*tol;
xm=0.5*(c-b);
if (fabs(xm) <= tol1 || fb == 0.0) return b;
if (fabs(e) >= tol1 && fabs(fa) > fabs(fb)) {
s=fb/fa;
if (a == c) {
p=2.0*xm*s;
q=1.0-s;
} else {
q=fa/fc;
r=fb/fc;
p=s*(2.0*xm*q*(q-r)-(b-a)*(r-1.0));
q=(q-1.0)*(r-1.0)*(s-1.0);
}
if (p > 0.0) q = -q;
p=fabs(p);
min1=3.0*xm*q-fabs(tol1*q);
min2=fabs(e*q);
if (2.0*p < (min1 < min2 ? min1 : min2)) {
e=d;
d=p/q;
} else {
d=xm;
e=d;
}
} else {
d=xm;
e=d;
}
a=b;
fa=fb;
if (fabs(d) > tol1)
b += d;
else
b += ((xm) >= 0.0 ? fabs(tol1) : -fabs(tol1));
fb=(this->*func)(b);
}
ERROR_MESSAGE();
std::cout << "Maximum number of iterations exceeded in NFW_Utility::zbrentD" << std::endl;
return 0.0;
}