-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathCVBM3D.m
445 lines (387 loc) · 21.3 KB
/
CVBM3D.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
function [Xdenoised] = CVBM3D(Xnoisy, sigma, Xorig)
% CVBM3D denoising of RGB videos corrupted with AWGN.
%
%
% [Xdenoised] = CVBM3D(Xnoisy, sigma, Xorig)
%
% INPUTS:
%
% 1) Xnoisy --> Either a filename of a noisy AVI RGB uncompressed video (e.g. 'SMg20.avi')
% or a 4-D matrix of dimensions (M x N x 3 x NumberOfFrames)
% The intensity range is [0,255]!
% 2) Sigma --> Noise standard deviation (assumed intensity range is [0,255])
%
% 3) Xorig (optional parameter) --> Filename of the original video
%
% OUTPUT: .avi files are written to the current matlab folder
%
% 1) Xdenoised --> A 4-D matrix with the denoised RGB-video
%
% USAGE EXAMPLES:
% 1) To denoise a video:
% CVBM3D('SMg20.avi', 20)
%
% 2) To denoise a video and print PSNR:
% CVBM3D('SMg20.avi', 20, 'SM.avi')
%
% 1) To denoise a 4-D matrix representing a noisy RGB video:
% CVBM3D(X_4D_matrix, 20)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Copyright © 2009 Tampere University of Technology. All rights reserved.
% This work should only be used for nonprofit purposes.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% If no input argument is provided, then use the internal ones from below:
if exist('sigma', 'var') ~= 1,
Xnoisy = 'SMg20.avi'; sigma = 20; ;
end
% Whether or not to print information to the screen
dump_information = 1;
% If the input is a 4-D matrix, then save it as AVI file that is used as
% input to the denoising
if ischar(Xnoisy) == 0;
NumberOfFrames = size(Xnoisy,4);
if NumberOfFrames <= 1
error('The input RGB video should be a 4-D matrix (M x N x 3 x NumberOfFrames)');
end
avi_filename = sprintf('ExternalMatrix_%.6d.avi', round(rand*50000));
if exist(avi_filename, 'file') == 2,
delete(avi_filename);
end
mov = avifile(avi_filename, 'Colormap', gray(256), 'compression', 'None', 'fps', 30);
if mean2(Xnoisy) <= 1
fprintf('Possible error: the input RGB-videos should be in range [0,255] and not in [0,1]!\n');
else
for ii = [1:NumberOfFrames],
mov = addframe(mov, uint8(Xnoisy(:,:,:,ii)));
end
end
mov = close(mov);
if dump_information == 1
fprintf('The input 4-D matrix was written to: %s.\n', avi_filename);
end
clear Xnoisy
Xnoisy = avi_filename;
end
% Read some properties of the noisy RGB video
noi_avi_file_info = aviinfo(Xnoisy);
NumberOfFrames = noi_avi_file_info.NumFrames;
%%% Read Xorig video --- needed if one wants to compute PSNR and ISNR
if exist('Xorig', 'var') == 1,
if ischar(Xorig) == 1;
org_avi_file_info = aviinfo(Xorig);
mo = aviread(Xorig);
Xorig = zeros([size(mo(1).cdata), NumberOfFrames], 'single');
for cf = 1:NumberOfFrames
Xorig(:,:,:,cf) = single(mo(cf).cdata(:,:,:));
end
clear mo;
if (org_avi_file_info.NumFrames == noi_avi_file_info.NumFrames && org_avi_file_info.FramesPerSecond == noi_avi_file_info.FramesPerSecond && ...
org_avi_file_info.Width == noi_avi_file_info.Width && org_avi_file_info.Height == noi_avi_file_info.Height)
dump_information = 1;
end
else
Xorig = single(Xorig);
if mean2(Xorig) <= 1
fprintf('Possible error: the input RGB-videos should be in range [0,255] and not in [0,1]!\n');
end
end
end
denoiseFrames = min(9, NumberOfFrames);
denoiseFramesW = min(9, NumberOfFrames);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Quality/complexity trade-off
%%%%
%%%% 'np' --> Normal Profile (balanced quality)
%%%% 'lc' --> Low Complexity Profile (fast, lower quality)
%%%%
if (exist('bm3dProfile') ~= 1)
bm3dProfile = 'np';
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Following are the parameters for the Normal Profile.
%%%%
%%%% Select transforms ('dct', 'dst', 'hadamard', or anything that is listed by 'help wfilters'):
transform_2D_HT_name = 'bior1.5'; %% transform used for the HT filt. of size N1 x N1
transform_2D_Wiener_name = 'dct'; %% transform used for the Wiener filt. of size N1_wiener x N1_wiener
transform_3rd_dim_name = 'haar'; %% tranform used in the 3-rd dim, the same for HT and Wiener filt.
%%%% Step 1: Hard-thresholding (HT) parameters:
N1 = 8; %% N1 x N1 is the block size used for the hard-thresholding (HT) filtering
Nstep = 5; %% sliding step to process every next refernece block
N2 = 8; %% maximum number of similar blocks (maximum size of the 3rd dimension of the 3D groups)
Ns = 7; %% length of the side of the search neighborhood for full-search block-matching (BM)
Npr = 3; %% length of the side of the motion-adaptive search neighborhood, use din the predictive-search BM
tau_match = 3000; %% threshold for the block distance (d-distance)
lambda_thr3D = 2.7; %% threshold parameter for the hard-thresholding in 3D DFT domain
dsub = 13; %% a small value subtracted from the distnce of blocks with the same spatial coordinate as the reference one
Nb = 2; %% number of blocks to follow in each next frame, used in the predictive-search BM
beta = 2.0; %% the beta parameter of the 2D Kaiser window used in the reconstruction
%%%% Step 2: Wiener filtering parameters:
N1_wiener = 7;
Nstep_wiener = 4;
N2_wiener = 8;
Ns_wiener = 7;
Npr_wiener = 3;
tau_match_wiener = 1000;
beta_wiener = 2.0;
dsub_wiener = 1.5;
Nb_wiener = 2;
%%%% Block-matching parameters:
stepFS = 1; %% step that firces to switch to full-search BM, "1" implies always full-search
stepFSW = 1;
thrToIncStep = 8; %% used in the HT filtering to increase the sliding step in uniform regions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Following are the parameters for the Low Complexity Profile.
%%%%
if strcmp(bm3dProfile, 'lc') == 1,
lambda_thr3D = 2.8;
denoiseFrames = min(5, NumberOfFrames);
denoiseFramesW = min(5, NumberOfFrames);
N2_wiener = 4;
N2 = 4;
Ns = 3;
Ns_wiener = 3;
Nb = 1;
Nb_wiener = 1;
end
if strcmp(bm3dProfile, 'hi') == 1,
Nstep = 3;
Nstep_wiener = 3;
end
if sigma > 30,
N1_wiener = 8;
tau_match = 4500;
tau_match_wiener = 3000;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Note: touch below this point only if you know what you are doing!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Create transform matrices, etc.
%%%%
decLevel = 0; %% dec. levels of the dyadic wavelet 2D transform for blocks (0 means full decomposition, higher values decrease the dec. number)
decLevel3 = 0; %% dec. level for the wavelet transform in the 3rd dimension
[Tfor, Tinv] = getTransfMatrix(N1, transform_2D_HT_name, decLevel); %% get (normalized) forward and inverse transform matrices
[TforW, TinvW] = getTransfMatrix(N1_wiener, transform_2D_Wiener_name); %% get (normalized) forward and inverse transform matrices
if (strcmp(transform_3rd_dim_name, 'haar') == 1 || strcmp(transform_3rd_dim_name(end-2:end), '1.1') == 1),
%%% Fast internal transform is used, no need to generate transform
%%% matrices.
hadper_trans_single_den = {};
inverse_hadper_trans_single_den = {};
else
%%% Create transform matrices. The transforms are later computed by
%%% matrix multiplication with them
for hh = [1 2 4 8 16 32];
[Tfor3rd, Tinv3rd] = getTransfMatrix(hh, transform_3rd_dim_name, decLevel3);
hadper_trans_single_den{hh} = single(Tfor3rd);
inverse_hadper_trans_single_den{hh} = single(Tinv3rd');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 2D Kaiser windows that scale the reconstructed blocks
%%%%
if beta_wiener==2 & beta==2 & N1_wiener==7 & N1==8 % hardcode the window function so that the signal processing toolbox is not needed by default
Wwin2D = [ 0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924;
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989;
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846;
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325;
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325;
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846;
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989;
0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924 ];
Wwin2D_wiener = [ 0.1924 0.3151 0.4055 0.4387 0.4055 0.3151 0.1924;
0.3151 0.5161 0.6640 0.7184 0.6640 0.5161 0.3151;
0.4055 0.6640 0.8544 0.9243 0.8544 0.6640 0.4055;
0.4387 0.7184 0.9243 1.0000 0.9243 0.7184 0.4387;
0.4055 0.6640 0.8544 0.9243 0.8544 0.6640 0.4055;
0.3151 0.5161 0.6640 0.7184 0.6640 0.5161 0.3151;
0.1924 0.3151 0.4055 0.4387 0.4055 0.3151 0.1924 ];
else
Wwin2D = kaiser(N1, beta) * kaiser(N1, beta)'; % Kaiser window used in the aggregation of the HT part
Wwin2D_wiener = kaiser(N1_wiener, beta_wiener) * kaiser(N1_wiener, beta_wiener)'; % Kaiser window used in the aggregation of the Wiener filt. part
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Read an image, generate noise and add it to the image
%%%%
if dump_information == 1
fprintf('Input video: %s, sigma: %.1f\n', Xnoisy, sigma);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Determine unique filenames of intermediate avi files
%%%%
HT_avi_file = sprintf('%s_cvbm3d_step1_0.avi', Xnoisy(1:end-4));
Denoised_avi_file = sprintf('%s_cvbm3d_0.avi', Xnoisy(1:end-4));
i = 1;
while (exist(['./' HT_avi_file], 'file') ~= 0) | (exist(['./' Denoised_avi_file],'file') ~= 0)
HT_avi_file = sprintf('%s_cvbm3d_step1_%d.avi', Xnoisy(1:end-4),i);
Denoised_avi_file = sprintf('%s_cvbm3d_%d.avi', Xnoisy(1:end-4),i);
i = i + 1;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Initial estimate by hard-thresholding filtering
HT_IO = {which(Xnoisy), HT_avi_file};
tic;
bm3d_thr_video_c(HT_IO, hadper_trans_single_den, Nstep, N1, N2, 0,...
lambda_thr3D, tau_match*N1*N1/(255*255), (Ns-1)/2, sigma/255, thrToIncStep,...
single(Tfor), single(Tinv)', inverse_hadper_trans_single_den, single(ones(N1)),...
'unused arg', dsub*dsub/255 * (sigma^2 / 255), ones(NumberOfFrames,1), Wwin2D,...
(Npr-1)/2, stepFS, denoiseFrames, Nb, 0 );
estimate_elapsed_time = toc;
if dump_information == 1
% mo = aviread(HT_avi_file);
% y_hat = zeros([size(mo(1).cdata(:,:,1)), 3, NumberOfFrames], 'single');
% for cf = 1:NumberOfFrames
% y_hat(:,:,:,cf) = single(mo(cf).cdata(:,:,:))/255;
% end
% clear mo
%
% PSNR_HT_ESTIMATE = 10*log10(1/mean2((Xorig-y_hat).^2));
% fprintf('HT ESTIMATE, PSNR: %.3f dB\n', PSNR_HT_ESTIMATE);
% clear y_hat;
fprintf('STEP1 completed!\n');
end
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %%%% Final estimate by Wiener filtering (using the hard-thresholding
% initial estimate)
lut_ic = ClipComp16b(sigma/255);
WIE_IO = {which(Xnoisy), HT_avi_file, Denoised_avi_file};
tic;
bm3d_wiener_video_c(WIE_IO, 'unused', hadper_trans_single_den, Nstep_wiener, N1_wiener, N2_wiener, ...
'unused_arg', tau_match_wiener*N1_wiener*N1_wiener/(255*255), (Ns_wiener-1)/2, sigma/255, 'unused arg',...
single(TforW), single(TinvW)', inverse_hadper_trans_single_den, 'unused arg', dsub_wiener*dsub_wiener/255*(sigma^2 / 255),...
ones(NumberOfFrames,1), Wwin2D_wiener, (Npr_wiener-1)/2, stepFSW, denoiseFramesW, Nb_wiener, 0, lut_ic);
wiener_elapsed_time = toc;
if nargout == 1
mo = aviread(Denoised_avi_file);
Xdenoised = zeros([size(mo(1).cdata(:,:,1)), 3, NumberOfFrames], 'single');
for cf = 1:NumberOfFrames
Xdenoised(:,:,:,cf) = single(mo(cf).cdata(:,:,:));
end
clear mo
end
if dump_information == 1
if nargout ~= 1
mo = aviread(Denoised_avi_file);
Xdenoised = zeros([size(mo(1).cdata(:,:,1)), 3, NumberOfFrames], 'single');
for cf = 1:NumberOfFrames
Xdenoised(:,:,:,cf) = single(mo(cf).cdata(:,:,:));
end
clear mo
end
PSNR_TEXT='';
if exist('Xorig', 'var') == 1
PSNR = 10*log10(255*255/mean((Xorig(:)-Xdenoised(:)).^2));
PSNR_TEXT=sprintf(' PSNR: %.3f dB,', PSNR);
New_Denoised_avi_file = sprintf('%s_PSNR%.2f.avi',Denoised_avi_file(1:end-4),PSNR);
movefile(Denoised_avi_file, New_Denoised_avi_file);
Denoised_avi_file = New_Denoised_avi_file;
end
% PSNRs = zeros(NumberOfFrames,1);
% for ii = 1:NumberOfFrames,
% PSNRs(ii) = 10*log10(1/mean2( (Xorig(:,:,:,ii)-Xdenoised(:,:,:,ii)).^2));
% fprintf('Frame: %d, PSNR: %.2f\n', ii, PSNRs(ii));
% end
if nargout == 0
clear Xdenoised
end
fprintf('FILTERING COMPLETED (frames/sec: %.2f,%s denoised video saved as %s)\n', ...
NumberOfFrames/(wiener_elapsed_time + estimate_elapsed_time), PSNR_TEXT, Denoised_avi_file);
end
return;
function [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)
%
% Create forward and inverse transform matrices, which allow for perfect
% reconstruction. The forward transform matrix is normalized so that the
% l2-norm of each basis element is 1.
%
% [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)
%
% INPUTS:
%
% N --> Size of the transform (for wavelets, must be 2^K)
%
% transform_type --> 'dct', 'dst', 'hadamard', or anything that is
% listed by 'help wfilters' (bi-orthogonal wavelets)
% 'DCrand' -- an orthonormal transform with a DC and all
% the other basis elements of random nature
%
% dec_levels --> If a wavelet transform is generated, this is the
% desired decomposition level. Must be in the
% range [0, log2(N)-1], where "0" implies
% full decomposition.
%
% OUTPUTS:
%
% Tforward --> (N x N) Forward transform matrix
%
% Tinverse --> (N x N) Inverse transform matrix
%
if exist('dec_levels') ~= 1,
dec_levels = 0;
end
if N == 1,
Tforward = 1;
elseif strcmp(transform_type, 'hadamard') == 1,
Tforward = hadamard(N);
elseif (N == 8) & strcmp(transform_type, 'bior1.5')==1 % hardcoded transform so that the wavelet toolbox is not needed to generate it
Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274;
0.219417649252501 0.449283757993216 0.449283757993216 0.219417649252501 -0.219417649252501 -0.449283757993216 -0.449283757993216 -0.219417649252501;
0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846 -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284;
-0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846;
0.707106781186547 -0.707106781186547 0 0 0 0 0 0;
0 0 0.707106781186547 -0.707106781186547 0 0 0 0;
0 0 0 0 0.707106781186547 -0.707106781186547 0 0;
0 0 0 0 0 0 0.707106781186547 -0.707106781186547];
elseif (N == 8) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it
Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274;
0.490392640201615 0.415734806151273 0.277785116509801 0.097545161008064 -0.097545161008064 -0.277785116509801 -0.415734806151273 -0.490392640201615;
0.461939766255643 0.191341716182545 -0.191341716182545 -0.461939766255643 -0.461939766255643 -0.191341716182545 0.191341716182545 0.461939766255643;
0.415734806151273 -0.097545161008064 -0.490392640201615 -0.277785116509801 0.277785116509801 0.490392640201615 0.097545161008064 -0.415734806151273;
0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274;
0.277785116509801 -0.490392640201615 0.097545161008064 0.415734806151273 -0.415734806151273 -0.097545161008064 0.490392640201615 -0.277785116509801;
0.191341716182545 -0.461939766255643 0.461939766255643 -0.191341716182545 -0.191341716182545 0.461939766255643 -0.461939766255643 0.191341716182545;
0.097545161008064 -0.277785116509801 0.415734806151273 -0.490392640201615 0.490392640201615 -0.415734806151273 0.277785116509801 -0.097545161008064];
elseif (N == 8) & strcmp(transform_type, 'dst')==1 % hardcoded transform so that the PDE toolbox is not needed to generate it
Tforward = [ 0.161229841765317 0.303012985114696 0.408248290463863 0.464242826880013 0.464242826880013 0.408248290463863 0.303012985114696 0.161229841765317;
0.303012985114696 0.464242826880013 0.408248290463863 0.161229841765317 -0.161229841765317 -0.408248290463863 -0.464242826880013 -0.303012985114696;
0.408248290463863 0.408248290463863 0 -0.408248290463863 -0.408248290463863 0 0.408248290463863 0.408248290463863;
0.464242826880013 0.161229841765317 -0.408248290463863 -0.303012985114696 0.303012985114696 0.408248290463863 -0.161229841765317 -0.464242826880013;
0.464242826880013 -0.161229841765317 -0.408248290463863 0.303012985114696 0.303012985114696 -0.408248290463863 -0.161229841765317 0.464242826880013;
0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863;
0.303012985114696 -0.464242826880013 0.408248290463863 -0.161229841765317 -0.161229841765317 0.408248290463863 -0.464242826880013 0.303012985114696;
0.161229841765317 -0.303012985114696 0.408248290463863 -0.464242826880013 0.464242826880013 -0.408248290463863 0.303012985114696 -0.161229841765317];
elseif (N == 7) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it
Tforward =[ 0.377964473009227 0.377964473009227 0.377964473009227 0.377964473009227 0.377964473009227 0.377964473009227 0.377964473009227;
0.521120889169602 0.417906505941275 0.231920613924330 0 -0.231920613924330 -0.417906505941275 -0.521120889169602;
0.481588117120063 0.118942442321354 -0.333269317528993 -0.534522483824849 -0.333269317528993 0.118942442321354 0.481588117120063;
0.417906505941275 -0.231920613924330 -0.521120889169602 0 0.521120889169602 0.231920613924330 -0.417906505941275;
0.333269317528993 -0.481588117120063 -0.118942442321354 0.534522483824849 -0.118942442321354 -0.481588117120063 0.333269317528993;
0.231920613924330 -0.521120889169602 0.417906505941275 0 -0.417906505941275 0.521120889169602 -0.231920613924330;
0.118942442321354 -0.333269317528993 0.481588117120063 -0.534522483824849 0.481588117120063 -0.333269317528993 0.118942442321354];
elseif strcmp(transform_type, 'dct') == 1,
Tforward = dct(eye(N));
elseif strcmp(transform_type, 'dst') == 1,
Tforward = dst(eye(N));
elseif strcmp(transform_type, 'DCrand') == 1,
x = randn(N); x(1:end,1) = 1; [Q,R] = qr(x);
if (Q(1) < 0),
Q = -Q;
end;
Tforward = Q';
else %% a wavelet decomposition supported by 'wavedec'
%%% Set periodic boundary conditions, to preserve bi-orthogonality
dwtmode('per','nodisp');
Tforward = zeros(N,N);
for i = 1:N
Tforward(:,i)=wavedec(circshift([1 zeros(1,N-1)],[dec_levels i-1]), log2(N), transform_type); %% construct transform matrix
end
end
%%% Normalize the basis elements
Tforward = (Tforward' * diag(sqrt(1./sum(Tforward.^2,2))))';
%%% Compute the inverse transform matrix
Tinverse = inv(Tforward);
return;