-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathBM3D_CFA.m
352 lines (299 loc) · 17.4 KB
/
BM3D_CFA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
function [varargout] = BM3D_CFA(z, sigma)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% BM3D_CFA is the modification of the BM3D algorithm for attenuation of additive white Gaussian noise from
% Bayer CFA images. This algorithm reproduces the results from the article:
%
% [1] A. Danielyan, M. Vehviläinen, A. Foi, V. Katkovnik, and K. Egiazarian,
% “Cross-color BM3D filtering of noisy raw data”,
% Proc. Int. Workshop on Local and Non-Local Approx. in Image Process.,
% LNLA 2009, Tuusula, Finland, pp. 125-129, August 2009.
%
% FUNCTION INTERFACE:
%
% [y_wiener, y_ht] = BM3D(z, sigma)
%
% ! The function can work without any of the input arguments,
% in which case, the internal default ones are used !
% INPUT ARGUMENTS (OPTIONAL):
%
% 2) z (matrix M x N): Noisy image (intensities in range [0,1] or [0,255])
% 3) sigma (double) : Std. dev. of the noise (corresponding to intensities
% in range [0,255] even if the range of z is [0,1])
% OUTPUTS:
% 1) y_wiener (matrix M x N): Final(wiener) estimate (in the range [0,1])
% 2) y_ht (matrix M x N): Basic (hard-thresholding) estimate (in the range [0,1])
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Copyright (c) 2009-2014 Tampere University of Technology.
% All rights reserved.
% This work should only be used for nonprofit purposes.
%
% AUTHORS:
% Aram Danielyan, email: aram dot danielyan _at_ .tut.fi
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% In case, a noisy image z is not provided, then use the filename
%%%% below to read an original image (might contain path also). Later,
%%%% artificial AWGN noise is added and this noisy image is processed
%%%% by the BM3D.
%%%%
image_name = [
'kodim07.png'
% 'kodim08.png'
% 'kodim19.png'
% 'kodim23.png'
];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Quality/complexity trade-off profile selection
%%%%
%%%% 'np' --> Normal Profile (balanced quality)
if ~exist('profile','var')
profile = 'np'; %% default profile
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Specify the std. dev. of the corrupting noise
%%%%
if ~exist('sigma','var')
sigma = 25; %% default standard deviation of the AWGN
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Following are the parameters for the Normal Profile.
%%%%
%%%% Select transforms ('dct', 'dst', 'hadamard', or anything that is listed by 'help wfilters'):
transform_2D_HT_name = 'dct'; %% transform used for the HT filt. of size N1 x N1
transform_2D_Wiener_name = 'dct';
transform_3rd_dim_name = 'haar'; %% transform used in the 3-rd dim, the same for HT and Wiener filt.
%%%% Hard-thresholding (HT) parameters:
N1 = 5; %% N1 x N1 is the block size used for the hard-thresholding (HT) filtering
Nstep = 3; %% sliding step to process every next reference block
N2 = 16; %% maximum number of similar blocks (maximum size of the 3rd dimension of a 3D array)
Ns = 39; %% length of the side of the search neighborhood for full-search block-matching (BM), must be odd
lambda_thr2D = 0;
tau_match = 3000;%% threshold for the block-distance (d-distance)
lambda_thr3D = 2.7; %% threshold parameter for the hard-thresholding in 3D transform domain
beta = 2.0; %% parameter of the 2D Kaiser window used in the reconstruction
%%%% Step 2: Wiener filtering parameters:
N1_wiener = 6;
Nstep_wiener = 3;
N2_wiener = 32;
Ns_wiener = 39;
tau_match_wiener = 400;
beta_wiener = 2.0;
%%%% Block-matching parameters:
stepFS = 1; %% step that forces to switch to full-search BM, "1" implies always full-search
smallLN = 'not used in np'; %% if stepFS > 1, then this specifies the size of the small local search neighb.
stepFSW = 1;
smallLNW = 'not used in np';
thrToIncStep = 8; % if the number of non-zero coefficients after HT is less than thrToIncStep,
% than the sliding step to the next reference block is incresed to (nm1-1)
decLevel = 0; %% dec. levels of the dyadic wavelet 2D transform for blocks (0 means full decomposition, higher values decrease the dec. number)
thr_mask = ones(N1); %% N1xN1 mask of threshold scaling coeff. --- by default there is no scaling, however the use of different thresholds for different wavelet decompoistion subbands can be done with this matrix
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Note: touch below this point only if you know what you are doing!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Create transform matrices, etc.
%%%%
[Tfor, Tinv] = getTransfMatrix(N1, transform_2D_HT_name, decLevel); %% get (normalized) forward and inverse transform matrices
[TforW, TinvW] = getTransfMatrix(N1_wiener, transform_2D_Wiener_name, 0); %% get (normalized) forward and inverse transform matrices
if (strcmp(transform_3rd_dim_name, 'haar') == 1) | (strcmp(transform_3rd_dim_name(end-2:end), '1.1') == 1),
%%% If Haar is used in the 3-rd dimension, then a fast internal transform is used, thus no need to generate transform
%%% matrices.
hadper_trans_single_den = {};
inverse_hadper_trans_single_den = {};
else
%%% Create transform matrices. The transforms are later applied by
%%% matrix-vector multiplication for the 1D case.
for hpow = 0:ceil(log2(max(N2,N2_wiener))),
h = 2^hpow;
[Tfor3rd, Tinv3rd] = getTransfMatrix(h, transform_3rd_dim_name, 0);
hadper_trans_single_den{h} = single(Tfor3rd);
inverse_hadper_trans_single_den{h} = single(Tinv3rd');
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% 2D Kaiser windows used in the aggregation of block-wise estimates
%%%%
if beta_wiener==2 & beta==2 & N1_wiener==8 & N1==8 % hardcode the window function so that the signal processing toolbox is not needed by default
Wwin2D = [ 0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924;
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989;
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846;
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325;
0.4325 0.6717 0.8644 0.9718 0.9718 0.8644 0.6717 0.4325;
0.3846 0.5974 0.7688 0.8644 0.8644 0.7688 0.5974 0.3846;
0.2989 0.4642 0.5974 0.6717 0.6717 0.5974 0.4642 0.2989;
0.1924 0.2989 0.3846 0.4325 0.4325 0.3846 0.2989 0.1924];
Wwin2D_wiener = Wwin2D;
else
Wwin2D = kaiser(N1, beta) * kaiser(N1, beta)'; % Kaiser window used in the aggregation of the HT part
Wwin2D_wiener = kaiser(N1_wiener, beta_wiener) * kaiser(N1_wiener, beta_wiener)'; % Kaiser window used in the aggregation of the Wiener filt. part
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% If needed, read images, generate noise, or scale the images to the
%%%% [0,1] interval
%%%%
if ~exist('z','var')
yRGB = im2double(imread(image_name)); %% read a noise-free image and put in intensity range [0,1]
y = zeros(size(yRGB,1), size(yRGB,2));
y(1:2:end,1:2:end) = yRGB(1:2:end,1:2:end,2);
y(2:2:end,2:2:end) = yRGB(2:2:end,2:2:end,2);
y(1:2:end,2:2:end) = yRGB(1:2:end,2:2:end,1);
y(2:2:end,1:2:end) = yRGB(2:2:end,1:2:end,3);
randn('seed', 0); %% generate seed
z = y + (sigma/255)*randn(size(y)); %% create a noisy image
else % external images
image_name = 'External image';
% convert z to double precision if needed
z = double(z);
y= [];
end
if (size(z,3) ~= 1)
error('BM3D accepts only grayscale 2D images.');
end
%%% Check whether to dump information to the screen or remain silent
if isempty(y)
dump_output_information = false;
else
dump_output_information = true;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% Print image information to the screen
%%%%
if dump_output_information
fprintf('Image: %s (%dx%d), sigma: %.1f\n', image_name, size(z,1), size(z,2), sigma);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Step 1. Produce the basic estimate by HT filtering
%%%%
tic;
y_ht = bm3d_CFA_thr(z, hadper_trans_single_den, Nstep, N1, N2, lambda_thr2D,...
lambda_thr3D, tau_match*N1*N1/(255*255), (Ns-1)/2, (sigma/255), thrToIncStep, single(Tfor), single(Tinv)', inverse_hadper_trans_single_den, single(thr_mask), Wwin2D, smallLN, stepFS );
estimate_elapsed_time = toc;
if dump_output_information
PSNR_INITIAL_ESTIMATE = 10*log10(1/mean((y(:)-double(y_ht(:))).^2));
fprintf('BASIC ESTIMATE, PSNR: %.2f dB\n', PSNR_INITIAL_ESTIMATE);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Step 2. Produce the final estimate by Wiener filtering (using the
%%%% hard-thresholding initial estimate)
%%%%
tic;
y_wiener = bm3d_CFA_wiener(z, y_ht, hadper_trans_single_den, Nstep_wiener, N1_wiener, N2_wiener, ...
'unused arg', tau_match_wiener*N1_wiener*N1_wiener/(255*255), (Ns_wiener-1)/2, (sigma/255), 'unused arg', single(TforW), single(TinvW)', inverse_hadper_trans_single_den, Wwin2D_wiener, smallLNW, stepFSW, single(ones(N1_wiener)) );
wiener_elapsed_time = toc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Calculate the final estimate's PSNR, print it, and show the
%%%% denoised image next to the noisy one
%%%%
y_wiener = double(y_wiener);
if dump_output_information
PSNR = 10*log10(1/mean((y(:)-y_wiener(:)).^2)); % y is valid
fprintf('FINAL ESTIMATE (total time: %.1f sec), PSNR: %.2f dB\n', ...
wiener_elapsed_time + estimate_elapsed_time, PSNR);
figure, imshow(z); title(sprintf('Noisy %s, PSNR: %.3f dB (sigma: %d)', ...
image_name(1:end-4), 10*log10(1/mean((y(:)-z(:)).^2)), sigma));
figure, imshow(y_wiener); title(sprintf('Denoised %s, PSNR: %.3f dB', ...
image_name(1:end-4), PSNR));
end
if nargout==0
varargout={};
else
varargout{1}=y_wiener;
varargout{2}=y_ht;
end
return;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Some auxiliary functions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)
%
% Create forward and inverse transform matrices, which allow for perfect
% reconstruction. The forward transform matrix is normalized so that the
% l2-norm of each basis element is 1.
%
% [Tforward, Tinverse] = getTransfMatrix (N, transform_type, dec_levels)
%
% INPUTS:
%
% N --> Size of the transform (for wavelets, must be 2^K)
%
% transform_type --> 'dct', 'dst', 'hadamard', or anything that is
% listed by 'help wfilters' (bi-orthogonal wavelets)
% 'DCrand' -- an orthonormal transform with a DC and all
% the other basis elements of random nature
%
% dec_levels --> If a wavelet transform is generated, this is the
% desired decomposition level. Must be in the
% range [0, log2(N)-1], where "0" implies
% full decomposition.
%
% OUTPUTS:
%
% Tforward --> (N x N) Forward transform matrix
%
% Tinverse --> (N x N) Inverse transform matrix
%
if exist('dec_levels') ~= 1,
dec_levels = 0;
end
if N == 1,
Tforward = 1;
elseif strcmp(transform_type, 'hadamard') == 1,
Tforward = hadamard(N);
elseif (N == 8) & strcmp(transform_type, 'bior1.5')==1 % hardcoded transform so that the wavelet toolbox is not needed to generate it
Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274;
0.219417649252501 0.449283757993216 0.449283757993216 0.219417649252501 -0.219417649252501 -0.449283757993216 -0.449283757993216 -0.219417649252501;
0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846 -0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284;
-0.083506045090284 0.083506045090284 -0.083506045090284 0.083506045090284 0.569359398342846 0.402347308162278 -0.402347308162278 -0.569359398342846;
0.707106781186547 -0.707106781186547 0 0 0 0 0 0;
0 0 0.707106781186547 -0.707106781186547 0 0 0 0;
0 0 0 0 0.707106781186547 -0.707106781186547 0 0;
0 0 0 0 0 0 0.707106781186547 -0.707106781186547];
elseif (N == 8) & strcmp(transform_type, 'dct')==1 % hardcoded transform so that the signal processing toolbox is not needed to generate it
Tforward = [ 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274 0.353553390593274;
0.490392640201615 0.415734806151273 0.277785116509801 0.097545161008064 -0.097545161008064 -0.277785116509801 -0.415734806151273 -0.490392640201615;
0.461939766255643 0.191341716182545 -0.191341716182545 -0.461939766255643 -0.461939766255643 -0.191341716182545 0.191341716182545 0.461939766255643;
0.415734806151273 -0.097545161008064 -0.490392640201615 -0.277785116509801 0.277785116509801 0.490392640201615 0.097545161008064 -0.415734806151273;
0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274 0.353553390593274 -0.353553390593274 -0.353553390593274 0.353553390593274;
0.277785116509801 -0.490392640201615 0.097545161008064 0.415734806151273 -0.415734806151273 -0.097545161008064 0.490392640201615 -0.277785116509801;
0.191341716182545 -0.461939766255643 0.461939766255643 -0.191341716182545 -0.191341716182545 0.461939766255643 -0.461939766255643 0.191341716182545;
0.097545161008064 -0.277785116509801 0.415734806151273 -0.490392640201615 0.490392640201615 -0.415734806151273 0.277785116509801 -0.097545161008064];
elseif (N == 8) & strcmp(transform_type, 'dst')==1 % hardcoded transform so that the PDE toolbox is not needed to generate it
Tforward = [ 0.161229841765317 0.303012985114696 0.408248290463863 0.464242826880013 0.464242826880013 0.408248290463863 0.303012985114696 0.161229841765317;
0.303012985114696 0.464242826880013 0.408248290463863 0.161229841765317 -0.161229841765317 -0.408248290463863 -0.464242826880013 -0.303012985114696;
0.408248290463863 0.408248290463863 0 -0.408248290463863 -0.408248290463863 0 0.408248290463863 0.408248290463863;
0.464242826880013 0.161229841765317 -0.408248290463863 -0.303012985114696 0.303012985114696 0.408248290463863 -0.161229841765317 -0.464242826880013;
0.464242826880013 -0.161229841765317 -0.408248290463863 0.303012985114696 0.303012985114696 -0.408248290463863 -0.161229841765317 0.464242826880013;
0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863 0 0.408248290463863 -0.408248290463863;
0.303012985114696 -0.464242826880013 0.408248290463863 -0.161229841765317 -0.161229841765317 0.408248290463863 -0.464242826880013 0.303012985114696;
0.161229841765317 -0.303012985114696 0.408248290463863 -0.464242826880013 0.464242826880013 -0.408248290463863 0.303012985114696 -0.161229841765317];
elseif strcmp(transform_type, 'dct') == 1,
Tforward = dct(eye(N));
elseif strcmp(transform_type, 'dst') == 1,
Tforward = dst(eye(N));
elseif strcmp(transform_type, 'DCrand') == 1,
x = randn(N); x(1:end,1) = 1; [Q,R] = qr(x);
if (Q(1) < 0),
Q = -Q;
end;
Tforward = Q';
else %% a wavelet decomposition supported by 'wavedec'
%%% Set periodic boundary conditions, to preserve bi-orthogonality
dwtmode('per','nodisp');
Tforward = zeros(N,N);
for i = 1:N
Tforward(:,i)=wavedec(circshift([1 zeros(1,N-1)],[dec_levels i-1]), log2(N), transform_type); %% construct transform matrix
end
end
%%% Normalize the basis elements
Tforward = (Tforward' * diag(sqrt(1./sum(Tforward.^2,2))))';
%%% Compute the inverse transform matrix
Tinverse = inv(Tforward);
return;