forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
drrun2.py
235 lines (227 loc) · 9.22 KB
/
drrun2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#!/usr/bin/python2.7
'''Trains a simple convnet on the MNIST dataset.
Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
'''
#python jetdual.py --save dualn2200 --network nnn2 --pt 200 --epoch 50 --stride 2 --gpu 3
#python jetdual.py --save dualn2m2200 --network nnn2 --pt 200 --epoch 50 --stride 2 --gpu 4 --pred 1 --mod 2
from __future__ import print_function
import argparse
parser=argparse.ArgumentParser()
parser.add_argument("--end",type=float,default=1.,help='end ratio')
parser.add_argument("--save",type=str,default="test",help='save name')
parser.add_argument("--network",type=str,default="rnn",help='network name on symbols/')
parser.add_argument("--opt",type=str,default="sgd",help='optimizer sgd rms adam')
parser.add_argument("--pt",type=int,default=20,help='pt range pt~pt*1.1')
parser.add_argument("--ptmin",type=float,default=0.,help='pt range pt~pt*1.1')
parser.add_argument("--ptmax",type=float,default=2.,help='pt range pt~pt*1.1')
parser.add_argument("--epochs",type=int,default=10,help='num epochs')
parser.add_argument("--batch_size",type=int,default=512,help='batch_size')
parser.add_argument("--loss",type=str,default="categorical_crossentropy",help='network name on symbols/')
parser.add_argument("--gpu",type=int,default=0,help='gpu number')
parser.add_argument("--isz",type=int,default=0,help='0 or z or not')
parser.add_argument("--eta",type=float,default=0.,help='end ratio')
parser.add_argument("--etabin",type=float,default=2.4,help='end ratio')
parser.add_argument("--unscale",type=int,default=1,help='end ratio')
parser.add_argument("--normb",type=float,default=1.,help='end ratio')
parser.add_argument("--stride",type=int,default=3,help='end ratio')
parser.add_argument("--pred",type=int,default=0,help='end ratio')
parser.add_argument("--channel",type=int,default=8,help='end ratio')
parser.add_argument("--mod",type=int,default=0,help='end ratio')
parser.add_argument("--rsect",type=int,default=0,help='rnn section')
parser.add_argument("--dsect",type=int,default=0,help='dense section')
parser.add_argument("--seed",type=str,default="",help='seed of model')
parser.add_argument("--memo",type=str,default="",help='some memo')
args=parser.parse_args()
import os
import keras
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Flatten, Embedding
from keras.layers import Conv2D, MaxPooling2D, SimpleRNN
from keras import backend as K
from numpy.random import seed
#seed(101)
#from keras.utils import plot_model
import subprocess
import random
import warnings
import math
from array import array
import numpy as np
#import ROOT as rt
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from importlib import import_module
from sklearn.utils import shuffle
import datetime
from sklearn.metrics import roc_auc_score, auc, roc_curve
def valauc(y_true,y_pred):
#return roc_auc_score(y_true,y_pred)
print(y_true,y_pred)
return K.mean(y_pred)
start=datetime.datetime.now()
if(args.gpu!=-1):
print("gpugpu")
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]=str(args.gpu)
#config =tf.ConfigProto(device_count={'GPU':1})
#config.gpu_options.per_process_gpu_memory_fraction=0.6
#set_session(tf.Session(config=config))
#gpus = tf.config.experimental.list_physical_devices('GPU')
#tf.config.experimental.set_visible_devices(gpus[0], 'GPU')
batch_size = args.batch_size
num_classes = 2
epochs = args.epochs
print(epochs)
# input image dimensions
if(args.loss=="weakloss"):args.loss=weakloss
net=import_module('symbols.symbols')
channel=args.channel
model=net.drmodel2()
if(args.opt=="sgd"):
opt=keras.optimizers.SGD()
if(args.opt=="rms"):
opt=keras.optimizers.RMSprop()
if(args.opt=="adam"):
opt=keras.optimizers.Adam()
losses=args.loss
if(args.stride!=0):
losses={}
lossweight={}
for i in range(args.stride):
losses["output{}".format(i+1)]=args.loss
lossweight["output{}".format(i+1)]=1.0
else:
losses=losses={"output1" : args.loss}
lossweight= {"output1" : 1.0}
model.compile(loss=losses,
optimizer=opt, loss_weights=lossweight,
metrics=['accuracy',keras.metrics.AUC()])
"""model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.SGD(),
metrics=['accuracy'])
"""
savename='save/'+str(args.save)
os.system("mkdir -p "+savename)
os.system("rm "+savename+'/log.log')
os.system("cp symbols/symbols.py "+savename+'/')
#plot_model(model,to_file=savename+'/model.png')
print("### plot done ###")
import logging
logging.basicConfig(filename=savename+'/log.log',level=logging.DEBUG)
logging.info(str(args))
logging.info(str(datetime.datetime.now()))
checkpoint=keras.callbacks.ModelCheckpoint(filepath=savename+'/check_{epoch}',monitor='val_loss',verbose=0,save_best_only=False,mode='auto',period=1)
loaded=np.load("/hdfs/store/user/yulee/DRsim/side23{}img.npz".format(args.pt))
imgset=loaded["imgset"].item()
if("qg" in args.memo):
el=imgset["uj"][:,:channel]
pi=imgset["gj"][:,:channel]
"""el2=[]
for i in range(len(el)/2):
el2.append(el[2*i]+el[2*i+1])
pi2=[]
for i in range(len(pi)/2):
pi2.append(pi[2*i]+pi[2*i+1])
el=np.array(el2)
pi=np.array(pi2)"""
if("ep" in args.memo):
el=imgset["el"][:,:channel]
pi=imgset["pi"][:,:channel]
ellabel=len(el)*[[0.,1.]]
pilabel=len(pi)*[[1.,0.]]
X,Y=shuffle(np.concatenate([el,pi]),np.concatenate([ellabel,pilabel]))
testX=X[int(0.7*len(X)):]
testY=Y[int(0.7*len(Y)):]
X=X[:int(0.7*len(X))]
Y=Y[:int(0.7*len(Y))]
print("shape",Y.shape,X.shape)
if(args.stride==1):history=model.fit(X,Y,batch_size=128,epochs=epochs,verbose=1,validation_split=0.3,callbacks=[checkpoint])
else:history=model.fit([X[:,:4],X[:,4:]],{"output1" : Y,"output2" : Y,"output3" : Y},batch_size=128,epochs=epochs,verbose=1,validation_split=0.4,callbacks=[checkpoint])
#print(history.history)
f=open(savename+'/history','w')
try:
one=history.history['val_loss'].index(min(history.history['val_loss']))
f.write(str(one)+'\n')
print(one)
for i in range(epochs):
if(i!=one):os.system("rm "+savename+"/check_"+str(i+1))
except:
print("failed to drop")
f.write(str(history.history))
f.close()
print (datetime.datetime.now()-start)
logging.info("memo "+args.memo)
logging.info("spent time "+str(datetime.datetime.now()-start))
logging.info("python jetdualpred.py --save {} --pt {} --stride {} --gpu {} --mod {}".format(args.save,args.pt,args.stride,args.gpu,args.mod))
import matplotlib.pyplot as plt
bp=model.predict([testX[:,:4],testX[:,4:]],verbose=0)
#bp=model.predict(X[int(0.4*len(X)):],verbose=0)
for i in range(args.stride):
fpr,tpr,thresholds=roc_curve(testY[:,0],bp[i][:,0])
#fpr,tpr,thresholds=roc_curve(Y[int(0.6*len(Y)):][:,0],bp[:,0])
print("AUC{}:{}".format(i+1,round(roc_auc_score(testY[:,0],bp[i][:,0]),4)))
label="AUC{}:{}".format(i+1,round(roc_auc_score(testY[:,0],bp[i][:,0]),4))
f=open("/home/yulee/keras/dr2","a")
f.write(("{};"*args.stride).format(*[roc_auc_score(testY[:,0],bp[i][:,0]) for i in range(args.stride)]))
f.write("\n")
f.close()
#label="AUC:{}".format(round(roc_auc_score(Y[int(0.6*len(Y)):][:,0],bp[:,0]),4))
if(args.pred==1):
#os.system("python /home/yulee/keras/jetdualpred.py --save {} --pt {} --stride {} --gpu {} --mod {}".format(args.save,args.pt,args.stride,args.gpu,args.mod))
savename="save/"+str(args.save)
history=open(savename+"/history").readlines()
try:
try:
hist=eval(history[0])
#a=hist['val1_auc']
a=hist['val_loss']
except:
hist=eval(history[0])
#a=hist['val1_auc']
a=hist['val_loss']
except:
sepoch=eval(history[0])
hist=eval(history[1])
from sklearn.metrics import roc_auc_score, auc, roc_curve
if(args.isz==0):iii=1
if(args.isz==1):iii=2
if(args.isz==-1):iii=3
epoch=hist['val_loss'.format(iii)].index(min(hist['val_loss'.format(iii)]))+1
try:
epoch=hist['val_loss'.format(iii)].index(min(hist['val_loss'.format(iii)]))+1
model=keras.models.load_model(savename+"/check_"+str(epoch))
except:
epoch=sepoch+1
model=keras.models.load_model(savename+"/check_"+str(epoch))
rc=""
for sha in model._feed_inputs:
if(sha._keras_shape[-1]==33*33):
rc+="c"
if(sha._keras_shape[-1]==33):
rc+="c"
onehot=0
if(args.stride==1):
bp=model.predict(X,verbose=0)
label=Y
if(args.stride==2):
bp=model.predict([X[0],X[1]],verbose=0)
label1=Y[0]
label2=Y[1]
if(args.stride==1):
line1="{} roc {} \n".format(args.save,roc_auc_score(Y[:,0],bp[:,0]))
print(line1)
f=open("/hdfs/store/user/yulee/keras/mergelog","a")
f.write(line1)
if(args.stride==2):
line1="{} roc 12 {} {} mean {} ".format(args.save,round(roc_auc_score(label1[:,0],bp[0][:,0]),5),round(roc_auc_score(label2[:,0],bp[1][:,0]),5),round(roc_auc_score(np.concatenate([label1[:,0],label2[:,0]]),np.concatenate([bp[0][:,0],bp[1][:,0]])),5))
score1=round(roc_auc_score(label1[:,0],bp[0][:,0]),5)
bp=model.predict([X[0],X[0]],verbose=0)
line2="{} roc 11 {} {} {} \n".format(args.save,round(roc_auc_score(label1[:,0],bp[0][:,0]),5),round(roc_auc_score(label1[:,0],bp[1][:,0]),5),score1-round(roc_auc_score(label1[:,0],bp[0][:,0]),5))
print(line1)
print(line2)
f=open("/hdfs/store/user/yulee/keras/mergelog","a")
f.write(line1)
f.write(line2)
f.close()