forked from bmc/munkres
-
Notifications
You must be signed in to change notification settings - Fork 0
/
munkres.py
604 lines (506 loc) · 18.9 KB
/
munkres.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
"""
Introduction
============
The Munkres module provides an implementation of the Munkres algorithm
(also called the Hungarian algorithm or the Kuhn-Munkres algorithm),
useful for solving the Assignment Problem.
For complete usage documentation, see: https://software.clapper.org/munkres/
"""
__docformat__ = 'markdown'
# ---------------------------------------------------------------------------
# Imports
# ---------------------------------------------------------------------------
import sys
import copy
from typing import Union, NewType, Sequence, Tuple, Optional, Callable
# ---------------------------------------------------------------------------
# Exports
# ---------------------------------------------------------------------------
__all__ = ['Munkres', 'make_cost_matrix', 'DISALLOWED']
# ---------------------------------------------------------------------------
# Globals
# ---------------------------------------------------------------------------
AnyNum = NewType('AnyNum', Union[int, float])
Matrix = NewType('Matrix', Sequence[Sequence[AnyNum]])
# Info about the module
__version__ = "1.1.4"
__author__ = "Brian Clapper, [email protected]"
__url__ = "https://software.clapper.org/munkres/"
__copyright__ = "(c) 2008-2020 Brian M. Clapper"
__license__ = "Apache Software License"
# Constants
class DISALLOWED_OBJ(object):
pass
DISALLOWED = DISALLOWED_OBJ()
DISALLOWED_PRINTVAL = "D"
# ---------------------------------------------------------------------------
# Exceptions
# ---------------------------------------------------------------------------
class UnsolvableMatrix(Exception):
"""
Exception raised for unsolvable matrices
"""
pass
# ---------------------------------------------------------------------------
# Classes
# ---------------------------------------------------------------------------
class Munkres:
"""
Calculate the Munkres solution to the classical assignment problem.
See the module documentation for usage.
"""
def __init__(self):
"""Create a new instance"""
self.C = None
self.row_covered = []
self.col_covered = []
self.n = 0
self.Z0_r = 0
self.Z0_c = 0
self.marked = None
self.path = None
def pad_matrix(self, matrix: Matrix, pad_value: int=0) -> Matrix:
"""
Pad a possibly non-square matrix to make it square.
**Parameters**
- `matrix` (list of lists of numbers): matrix to pad
- `pad_value` (`int`): value to use to pad the matrix
**Returns**
a new, possibly padded, matrix
"""
max_columns = 0
total_rows = len(matrix)
for row in matrix:
max_columns = max(max_columns, len(row))
total_rows = max(max_columns, total_rows)
new_matrix = []
for row in matrix:
row_len = len(row)
new_row = list(row[:])
if total_rows > row_len:
# Row too short. Pad it.
new_row += [pad_value] * (total_rows - row_len)
new_matrix += [new_row]
while len(new_matrix) < total_rows:
new_matrix += [[pad_value] * total_rows]
return new_matrix
def compute(self, cost_matrix: Matrix) -> Sequence[Tuple[int, int]]:
"""
Compute the indexes for the lowest-cost pairings between rows and
columns in the database. Returns a list of `(row, column)` tuples
that can be used to traverse the matrix.
**WARNING**: This code handles square and rectangular matrices. It
does *not* handle irregular matrices.
**Parameters**
- `cost_matrix` (list of lists of numbers): The cost matrix. If this
cost matrix is not square, it will be padded with zeros, via a call
to `pad_matrix()`. (This method does *not* modify the caller's
matrix. It operates on a copy of the matrix.)
**Returns**
A list of `(row, column)` tuples that describe the lowest cost path
through the matrix
"""
self.C = self.pad_matrix(cost_matrix)
self.n = len(self.C)
self.original_length = len(cost_matrix)
self.original_width = len(cost_matrix[0])
self.row_covered = [False for i in range(self.n)]
self.col_covered = [False for i in range(self.n)]
self.Z0_r = 0
self.Z0_c = 0
self.path = self.__make_matrix(self.n * 2, 0)
self.marked = self.__make_matrix(self.n, 0)
done = False
step = 1
steps = { 1 : self.__step1,
2 : self.__step2,
3 : self.__step3,
4 : self.__step4,
5 : self.__step5,
6 : self.__step6 }
while not done:
try:
func = steps[step]
step = func()
except KeyError:
done = True
# Look for the starred columns
results = []
for i in range(self.n):
for j in range(self.n):
if self.marked[i][j] == 1:
results += [(i, j)]
return results
def __copy_matrix(self, matrix: Matrix) -> Matrix:
"""Return an exact copy of the supplied matrix"""
return copy.deepcopy(matrix)
def __make_matrix(self, n: int, val: AnyNum) -> Matrix:
"""Create an *n*x*n* matrix, populating it with the specific value."""
matrix = []
for i in range(n):
matrix += [[val for j in range(n)]]
return matrix
def __step1(self) -> int:
"""
For each row of the matrix, find the smallest element and
subtract it from every element in its row. Go to Step 2.
"""
C = self.C
n = self.n
for i in range(n):
vals = [x for x in self.C[i] if x is not DISALLOWED]
if len(vals) == 0:
# All values in this row are DISALLOWED. This matrix is
# unsolvable.
raise UnsolvableMatrix(
"Row {0} is entirely DISALLOWED.".format(i)
)
minval = min(vals)
# Find the minimum value for this row and subtract that minimum
# from every element in the row.
for j in range(n):
if self.C[i][j] is not DISALLOWED:
self.C[i][j] -= minval
return 2
def __step2(self) -> int:
"""
Find a zero (Z) in the resulting matrix. If there is no starred
zero in its row or column, star Z. Repeat for each element in the
matrix. Go to Step 3.
"""
n = self.n
for i in range(n):
for j in range(n):
if (self.C[i][j] == 0) and \
(not self.col_covered[j]) and \
(not self.row_covered[i]):
self.marked[i][j] = 1
self.col_covered[j] = True
self.row_covered[i] = True
break
self.__clear_covers()
return 3
def __step3(self) -> int:
"""
Cover each column containing a starred zero. If K columns are
covered, the starred zeros describe a complete set of unique
assignments. In this case, Go to DONE, otherwise, Go to Step 4.
"""
n = self.n
count = 0
for i in range(n):
for j in range(n):
if self.marked[i][j] == 1 and not self.col_covered[j]:
self.col_covered[j] = True
count += 1
if count >= n:
step = 7 # done
else:
step = 4
return step
def __step4(self) -> int:
"""
Find a noncovered zero and prime it. If there is no starred zero
in the row containing this primed zero, Go to Step 5. Otherwise,
cover this row and uncover the column containing the starred
zero. Continue in this manner until there are no uncovered zeros
left. Save the smallest uncovered value and Go to Step 6.
"""
step = 0
done = False
row = 0
col = 0
star_col = -1
while not done:
(row, col) = self.__find_a_zero(row, col)
if row < 0:
done = True
step = 6
else:
self.marked[row][col] = 2
star_col = self.__find_star_in_row(row)
if star_col >= 0:
col = star_col
self.row_covered[row] = True
self.col_covered[col] = False
else:
done = True
self.Z0_r = row
self.Z0_c = col
step = 5
return step
def __step5(self) -> int:
"""
Construct a series of alternating primed and starred zeros as
follows. Let Z0 represent the uncovered primed zero found in Step 4.
Let Z1 denote the starred zero in the column of Z0 (if any).
Let Z2 denote the primed zero in the row of Z1 (there will always
be one). Continue until the series terminates at a primed zero
that has no starred zero in its column. Unstar each starred zero
of the series, star each primed zero of the series, erase all
primes and uncover every line in the matrix. Return to Step 3
"""
count = 0
path = self.path
path[count][0] = self.Z0_r
path[count][1] = self.Z0_c
done = False
while not done:
row = self.__find_star_in_col(path[count][1])
if row >= 0:
count += 1
path[count][0] = row
path[count][1] = path[count-1][1]
else:
done = True
if not done:
col = self.__find_prime_in_row(path[count][0])
count += 1
path[count][0] = path[count-1][0]
path[count][1] = col
self.__convert_path(path, count)
self.__clear_covers()
self.__erase_primes()
return 3
def __step6(self) -> int:
"""
Add the value found in Step 4 to every element of each covered
row, and subtract it from every element of each uncovered column.
Return to Step 4 without altering any stars, primes, or covered
lines.
"""
minval = self.__find_smallest()
events = 0 # track actual changes to matrix
for i in range(self.n):
for j in range(self.n):
if self.C[i][j] is DISALLOWED:
continue
if self.row_covered[i]:
self.C[i][j] += minval
events += 1
if not self.col_covered[j]:
self.C[i][j] -= minval
events += 1
if self.row_covered[i] and not self.col_covered[j]:
events -= 2 # change reversed, no real difference
if (events == 0):
raise UnsolvableMatrix("Matrix cannot be solved!")
return 4
def __find_smallest(self) -> AnyNum:
"""Find the smallest uncovered value in the matrix."""
minval = sys.maxsize
for i in range(self.n):
for j in range(self.n):
if (not self.row_covered[i]) and (not self.col_covered[j]):
if self.C[i][j] is not DISALLOWED and minval > self.C[i][j]:
minval = self.C[i][j]
return minval
def __find_a_zero(self, i0: int = 0, j0: int = 0) -> Tuple[int, int]:
"""Find the first uncovered element with value 0"""
row = -1
col = -1
i = i0
n = self.n
done = False
while not done:
j = j0
while True:
if (self.C[i][j] == 0) and \
(not self.row_covered[i]) and \
(not self.col_covered[j]):
row = i
col = j
done = True
j = (j + 1) % n
if j == j0:
break
i = (i + 1) % n
if i == i0:
done = True
return (row, col)
def __find_star_in_row(self, row: Sequence[AnyNum]) -> int:
"""
Find the first starred element in the specified row. Returns
the column index, or -1 if no starred element was found.
"""
col = -1
for j in range(self.n):
if self.marked[row][j] == 1:
col = j
break
return col
def __find_star_in_col(self, col: Sequence[AnyNum]) -> int:
"""
Find the first starred element in the specified row. Returns
the row index, or -1 if no starred element was found.
"""
row = -1
for i in range(self.n):
if self.marked[i][col] == 1:
row = i
break
return row
def __find_prime_in_row(self, row) -> int:
"""
Find the first prime element in the specified row. Returns
the column index, or -1 if no starred element was found.
"""
col = -1
for j in range(self.n):
if self.marked[row][j] == 2:
col = j
break
return col
def __convert_path(self,
path: Sequence[Sequence[int]],
count: int) -> None:
for i in range(count+1):
if self.marked[path[i][0]][path[i][1]] == 1:
self.marked[path[i][0]][path[i][1]] = 0
else:
self.marked[path[i][0]][path[i][1]] = 1
def __clear_covers(self) -> None:
"""Clear all covered matrix cells"""
for i in range(self.n):
self.row_covered[i] = False
self.col_covered[i] = False
def __erase_primes(self) -> None:
"""Erase all prime markings"""
for i in range(self.n):
for j in range(self.n):
if self.marked[i][j] == 2:
self.marked[i][j] = 0
# ---------------------------------------------------------------------------
# Functions
# ---------------------------------------------------------------------------
def make_cost_matrix(
profit_matrix: Matrix,
inversion_function: Optional[Callable[[AnyNum], AnyNum]] = None
) -> Matrix:
"""
Create a cost matrix from a profit matrix by calling `inversion_function()`
to invert each value. The inversion function must take one numeric argument
(of any type) and return another numeric argument which is presumed to be
the cost inverse of the original profit value. If the inversion function
is not provided, a given cell's inverted value is calculated as
`max(matrix) - value`.
This is a static method. Call it like this:
from munkres import Munkres
cost_matrix = Munkres.make_cost_matrix(matrix, inversion_func)
For example:
from munkres import Munkres
cost_matrix = Munkres.make_cost_matrix(matrix, lambda x : sys.maxsize - x)
**Parameters**
- `profit_matrix` (list of lists of numbers): The matrix to convert from
profit to cost values.
- `inversion_function` (`function`): The function to use to invert each
entry in the profit matrix.
**Returns**
A new matrix representing the inversion of `profix_matrix`.
"""
if not inversion_function:
maximum = max(max(row) for row in profit_matrix)
inversion_function = lambda x: maximum - x
cost_matrix = []
for row in profit_matrix:
cost_matrix.append([inversion_function(value) for value in row])
return cost_matrix
def print_matrix(matrix: Matrix, msg: Optional[str] = None) -> None:
"""
Convenience function: Displays the contents of a matrix.
**Parameters**
- `matrix` (list of lists of numbers): The matrix to print
- `msg` (`str`): Optional message to print before displaying the matrix
"""
import math
if msg is not None:
print(msg)
# Calculate the appropriate format width.
width = 0
for row in matrix:
for val in row:
if val is DISALLOWED:
val = DISALLOWED_PRINTVAL
width = max(width, len(str(val)))
# Make the format string
format = ('%%%d' % width)
# Print the matrix
for row in matrix:
sep = '['
for val in row:
if val is DISALLOWED:
val = DISALLOWED_PRINTVAL
formatted = ((format + 's') % val)
sys.stdout.write(sep + formatted)
sep = ', '
sys.stdout.write(']\n')
# ---------------------------------------------------------------------------
# Main
# ---------------------------------------------------------------------------
if __name__ == '__main__':
matrices = [
# Square
([[400, 150, 400],
[400, 450, 600],
[300, 225, 300]],
850), # expected cost
# Rectangular variant
([[400, 150, 400, 1],
[400, 450, 600, 2],
[300, 225, 300, 3]],
452), # expected cost
# Square
([[10, 10, 8],
[9, 8, 1],
[9, 7, 4]],
18),
# Square variant with floating point value
([[10.1, 10.2, 8.3],
[9.4, 8.5, 1.6],
[9.7, 7.8, 4.9]],
19.5),
# Rectangular variant
([[10, 10, 8, 11],
[9, 8, 1, 1],
[9, 7, 4, 10]],
15),
# Rectangular variant with floating point value
([[10.01, 10.02, 8.03, 11.04],
[9.05, 8.06, 1.07, 1.08],
[9.09, 7.1, 4.11, 10.12]],
15.2),
# Rectangular with DISALLOWED
([[4, 5, 6, DISALLOWED],
[1, 9, 12, 11],
[DISALLOWED, 5, 4, DISALLOWED],
[12, 12, 12, 10]],
20),
# Rectangular variant with DISALLOWED and floating point value
([[4.001, 5.002, 6.003, DISALLOWED],
[1.004, 9.005, 12.006, 11.007],
[DISALLOWED, 5.008, 4.009, DISALLOWED],
[12.01, 12.011, 12.012, 10.013]],
20.028),
# DISALLOWED to force pairings
([[1, DISALLOWED, DISALLOWED, DISALLOWED],
[DISALLOWED, 2, DISALLOWED, DISALLOWED],
[DISALLOWED, DISALLOWED, 3, DISALLOWED],
[DISALLOWED, DISALLOWED, DISALLOWED, 4]],
10),
# DISALLOWED to force pairings with floating point value
([[1.1, DISALLOWED, DISALLOWED, DISALLOWED],
[DISALLOWED, 2.2, DISALLOWED, DISALLOWED],
[DISALLOWED, DISALLOWED, 3.3, DISALLOWED],
[DISALLOWED, DISALLOWED, DISALLOWED, 4.4]],
11.0)]
m = Munkres()
for cost_matrix, expected_total in matrices:
print_matrix(cost_matrix, msg='cost matrix')
indexes = m.compute(cost_matrix)
total_cost = 0
for r, c in indexes:
x = cost_matrix[r][c]
total_cost += x
print(('(%d, %d) -> %s' % (r, c, x)))
print(('lowest cost=%s' % total_cost))
assert expected_total == total_cost