forked from jingxil/Neural-Decision-Forests
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
216 lines (179 loc) · 8.97 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import argparse
import logging
import torch
import torch.nn.functional as F
import torchvision
from torch.autograd import Variable
import dataset
import ndf
def parse_arg():
logging.basicConfig(
level=logging.WARNING,
format="[%(asctime)s]: %(levelname)s: %(message)s"
)
parser = argparse.ArgumentParser(description='train.py')
parser.add_argument('-dataset', choices=['mnist', 'adult', 'letter', 'yeast'], default='mnist')
parser.add_argument('-batch_size', type=int, default=128)
parser.add_argument('-feat_dropout', type=float, default=0.3)
parser.add_argument('-n_tree', type=int, default=5)
parser.add_argument('-tree_depth', type=int, default=3)
parser.add_argument('-n_class', type=int, default=10)
parser.add_argument('-tree_feature_rate', type=float, default=0.5)
parser.add_argument('-lr', type=float, default=0.001, help="sgd: 10, adam: 0.001")
parser.add_argument('-gpuid', type=int, default=-1)
parser.add_argument('-jointly_training', action='store_true', default=False)
parser.add_argument('-epochs', type=int, default=10)
parser.add_argument('-report_every', type=int, default=10)
opt = parser.parse_args()
return opt
def prepare_db(opt):
print("Use %s dataset" % (opt.dataset))
if opt.dataset == 'mnist':
train_dataset = torchvision.datasets.MNIST('./data/mnist', train=True, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))
]))
eval_dataset = torchvision.datasets.MNIST('./data/mnist', train=False, download=True,
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,))
]))
return {'train': train_dataset, 'eval': eval_dataset}
elif opt.dataset == 'adult':
train_dataset = dataset.UCIAdult('./data/uci_adult', train=True)
eval_dataset = dataset.UCIAdult('./data/uci_adult', train=False)
return {'train': train_dataset, 'eval': eval_dataset}
elif opt.dataset == 'letter':
train_dataset = dataset.UCILetter('./data/uci_letter', train=True)
eval_dataset = dataset.UCILetter('./data/uci_letter', train=False)
return {'train': train_dataset, 'eval': eval_dataset}
elif opt.dataset == 'yeast':
train_dataset = dataset.UCIYeast('./data/uci_yeast', train=True)
eval_dataset = dataset.UCIYeast('./data/uci_yeast', train=False)
return {'train': train_dataset, 'eval': eval_dataset}
else:
raise NotImplementedError
def prepare_model(opt):
if opt.dataset == 'mnist':
feat_layer = ndf.MNISTFeatureLayer(opt.feat_dropout)
elif opt.dataset == 'adult':
feat_layer = ndf.UCIAdultFeatureLayer(opt.feat_dropout)
elif opt.dataset == 'letter':
feat_layer = ndf.UCILetterFeatureLayer(opt.feat_dropout)
elif opt.dataset == 'yeast':
feat_layer = ndf.UCIYeastFeatureLayer(opt.feat_dropout)
else:
raise NotImplementedError
forest = ndf.Forest(n_tree=opt.n_tree, tree_depth=opt.tree_depth, n_in_feature=feat_layer.get_out_feature_size(),
tree_feature_rate=opt.tree_feature_rate, n_class=opt.n_class,
jointly_training=opt.jointly_training)
model = ndf.NeuralDecisionForest(feat_layer, forest)
if opt.cuda:
model = model.cuda()
else:
model = model.cpu()
return model
def prepare_optim(model, opt):
params = [p for p in model.parameters() if p.requires_grad]
return torch.optim.Adam(params, lr=opt.lr, weight_decay=1e-5)
def train(model, optim, db, opt):
for epoch in range(1, opt.epochs + 1):
# Update \Pi
if not opt.jointly_training:
print("Epoch %d : Two Stage Learing - Update PI" % (epoch))
# prepare feats
cls_onehot = torch.eye(opt.n_class)
feat_batches = []
target_batches = []
train_loader = torch.utils.data.DataLoader(db['train'], batch_size=opt.batch_size, shuffle=True)
with torch.no_grad():
for batch_idx, (data, target) in enumerate(train_loader):
if opt.cuda:
data, target, cls_onehot = data.cuda(), target.cuda(), cls_onehot.cuda()
data = Variable(data)
# Get feats
feats = model.feature_layer(data)
feats = feats.view(feats.size()[0], -1)
feat_batches.append(feats)
target_batches.append(cls_onehot[target])
# Update \Pi for each tree
for tree in model.forest.trees:
mu_batches = []
for feats in feat_batches:
mu = tree(feats) # [batch_size,n_leaf]
mu_batches.append(mu)
for _ in range(20):
new_pi = torch.zeros((tree.n_leaf, tree.n_class)) # Tensor [n_leaf,n_class]
if opt.cuda:
new_pi = new_pi.cuda()
for mu, target in zip(mu_batches, target_batches):
pi = tree.get_pi() # [n_leaf,n_class]
prob = tree.cal_prob(mu, pi) # [batch_size,n_class]
# Variable to Tensor
pi = pi.data
prob = prob.data
mu = mu.data
_target = target.unsqueeze(1) # [batch_size,1,n_class]
_pi = pi.unsqueeze(0) # [1,n_leaf,n_class]
_mu = mu.unsqueeze(2) # [batch_size,n_leaf,1]
_prob = torch.clamp(prob.unsqueeze(1), min=1e-6, max=1.) # [batch_size,1,n_class]
_new_pi = torch.mul(torch.mul(_target, _pi), _mu) / _prob # [batch_size,n_leaf,n_class]
new_pi += torch.sum(_new_pi, dim=0)
# test
# import numpy as np
# if np.any(np.isnan(new_pi.cpu().numpy())):
# print(new_pi)
# test
new_pi = F.softmax(Variable(new_pi), dim=1).data
tree.update_pi(new_pi)
# Update \Theta
model.train()
train_loader = torch.utils.data.DataLoader(db['train'], batch_size=opt.batch_size, shuffle=True)
for batch_idx, (data, target) in enumerate(train_loader):
if opt.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optim.zero_grad()
output = model(data)
loss = F.nll_loss(torch.log(output), target)
loss.backward()
# torch.nn.utils.clip_grad_norm([ p for p in model.parameters() if p.requires_grad],
# max_norm=5)
optim.step()
if batch_idx % opt.report_every == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
# Eval
model.eval()
test_loss = 0
correct = 0
test_loader = torch.utils.data.DataLoader(db['eval'], batch_size=opt.batch_size, shuffle=True)
with torch.no_grad():
for data, target in test_loader:
if opt.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
output = model(data)
test_loss += F.nll_loss(torch.log(output), target, size_average=False).item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.6f})\n'.format(
test_loss, correct, len(test_loader.dataset),
correct / len(test_loader.dataset)))
def main():
opt = parse_arg()
# GPU
opt.cuda = opt.gpuid >= 0
if opt.gpuid >= 0:
torch.cuda.set_device(opt.gpuid)
else:
print("WARNING: RUN WITHOUT GPU")
db = prepare_db(opt)
model = prepare_model(opt)
optim = prepare_optim(model, opt)
train(model, optim, db, opt)
if __name__ == '__main__':
main()