forked from alexander-rakhlin/ICIAR2018
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfeature_extractor.py
360 lines (297 loc) · 11.4 KB
/
feature_extractor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
#!/usr/bin/env python3
"""Extract deep CNN features from a set of images and dump them as Numpy arrays image_file_name.npy"""
import argparse
import numpy as np
import cv2
from scipy import ndimage
from os.path import basename, join, exists
from os import makedirs
from threaded_generator import threaded_generator
from time import time
import sys
np.random.seed(13)
PATCH_SIZES = [400, 650]
SCALES = [0.5]
DEFAULT_INPUT_DIR = "data/train"
DEFAULT_PREPROCESSED_ROOT = "data/preprocessed/train"
PATCHES_PER_IMAGE = 20
AUGMENTATIONS_PER_IMAGE = 50
COLOR_LO = 0.7
COLOR_HI = 1.3
BATCH_SIZE = 16 # decrease if necessary
NUM_CACHED = 160
def recursive_glob(root_dir, file_template="*.tif"):
"""Traverse directory recursively. Starting with Python version 3.5, the glob module supports the "**" directive"""
if sys.version_info[0] * 10 + sys.version_info[1] < 35:
import fnmatch
import os
matches = []
for root, dirnames, filenames in os.walk(root_dir):
for filename in fnmatch.filter(filenames, file_template):
matches.append(os.path.join(root, filename))
return matches
else:
import glob
return glob.glob(root_dir + "/**/" + file_template, recursive=True)
def normalize_staining(img):
"""
Adopted from "Classification of breast cancer histology images using Convolutional Neural Networks",
Teresa Araújo , Guilherme Aresta, Eduardo Castro, José Rouco, Paulo Aguiar, Catarina Eloy, António Polónia,
Aurélio Campilho. https://doi.org/10.1371/journal.pone.0177544
Performs staining normalization.
# Arguments
img: Numpy image array.
# Returns
Normalized Numpy image array.
"""
Io = 240
beta = 0.15
alpha = 1
HERef = np.array([[0.5626, 0.2159],
[0.7201, 0.8012],
[0.4062, 0.5581]])
maxCRef = np.array([1.9705, 1.0308])
h, w, c = img.shape
img = img.reshape(h * w, c)
OD = -np.log((img.astype("uint16") + 1) / Io)
ODhat = OD[(OD >= beta).all(axis=1)]
W, V = np.linalg.eig(np.cov(ODhat, rowvar=False))
Vec = -V.T[:2][::-1].T # desnecessario o sinal negativo
That = np.dot(ODhat, Vec)
phi = np.arctan2(That[:, 1], That[:, 0])
minPhi = np.percentile(phi, alpha)
maxPhi = np.percentile(phi, 100 - alpha)
vMin = np.dot(Vec, np.array([np.cos(minPhi), np.sin(minPhi)]))
vMax = np.dot(Vec, np.array([np.cos(maxPhi), np.sin(maxPhi)]))
if vMin[0] > vMax[0]:
HE = np.array([vMin, vMax])
else:
HE = np.array([vMax, vMin])
HE = HE.T
Y = OD.reshape(h * w, c).T
C = np.linalg.lstsq(HE, Y)
maxC = np.percentile(C[0], 99, axis=1)
C = C[0] / maxC[:, None]
C = C * maxCRef[:, None]
Inorm = Io * np.exp(-np.dot(HERef, C))
Inorm = Inorm.T.reshape(h, w, c).clip(0, 255).astype("uint8")
return Inorm
def hematoxylin_eosin_aug(img, low=0.7, high=1.3, seed=None):
"""
"Quantification of histochemical staining by color deconvolution"
Arnout C. Ruifrok, Ph.D. and Dennis A. Johnston, Ph.D.
http://www.math-info.univ-paris5.fr/~lomn/Data/2017/Color/Quantification_of_histochemical_staining.pdf
Performs random hematoxylin-eosin augmentation
# Arguments
img: Numpy image array.
low: Low boundary for augmentation multiplier
high: High boundary for augmentation multiplier
# Returns
Augmented Numpy image array.
"""
D = np.array([[1.88, -0.07, -0.60],
[-1.02, 1.13, -0.48],
[-0.55, -0.13, 1.57]])
M = np.array([[0.65, 0.70, 0.29],
[0.07, 0.99, 0.11],
[0.27, 0.57, 0.78]])
Io = 240
h, w, c = img.shape
OD = -np.log10((img.astype("uint16") + 1) / Io)
C = np.dot(D, OD.reshape(h * w, c).T).T
r = np.ones(3)
r[:2] = np.random.RandomState(seed).uniform(low=low, high=high, size=2)
img_aug = np.dot(C, M) * r
img_aug = Io * np.exp(-img_aug * np.log(10)) - 1
img_aug = img_aug.reshape(h, w, c).clip(0, 255).astype("uint8")
return img_aug
def zoom_aug(img, zoom_var, seed=None):
"""Performs a random spatial zoom of a Numpy image array.
# Arguments
img: Numpy image array.
zoom_var: zoom range multiplier for width and height.
seed: Random seed.
# Returns
Zoomed Numpy image array.
"""
scale = np.random.RandomState(seed).uniform(low=1 / zoom_var, high=zoom_var)
resized_img = cv2.resize(img, None, fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC)
return resized_img
def get_crops(img, size, n, seed=None):
"""Creates random square crops of given size from a Numpy image array. No rotation added
# Arguments
img: Numpy image array.
size: size of crops.
n: number of crops
seed: Random seed.
# Returns
Numpy array of crops, shape (n, size, size, c).
"""
h, w, c = img.shape
assert all([size < h, size < w])
crops = []
for _ in range(n):
top = np.random.randint(low=0, high=h - size + 1)
left = np.random.randint(low=0, high=w - size + 1)
crop = img[top: top + size, left: left + size].copy()
crop = np.rot90(crop, np.random.randint(low=0, high=4))
if np.random.random() > 0.5:
crop = np.flipud(crop)
if np.random.random() > 0.5:
crop = np.fliplr(crop)
crops.append(crop)
crops = np.stack(crops)
assert crops.shape == (n, size, size, c)
return crops
def get_crops_free(img, size, n, seed=None):
"""Creates random square crops of given size from a Numpy image array. With rotation
# Arguments
img: Numpy image array.
size: size of crops.
n: number of crops
seed: Random seed.
# Returns
Numpy array of crops, shape (n, size, size, c).
"""
h, w, c = img.shape
assert all([size < h, size < w])
d = int(np.ceil(size / np.sqrt(2)))
crops = []
for _ in range(n):
center_y = np.random.randint(low=0, high=h - size + 1) + size // 2
center_x = np.random.randint(low=0, high=w - size + 1) + size // 2
m = min(center_y, center_x, h - center_y, w - center_x)
if m < d:
max_angle = np.pi / 4 - np.arccos(m / d)
top = center_y - m
left = center_x - m
precrop = img[top: top + 2 * m, left: left + 2 * m]
else:
max_angle = np.pi / 4
top = center_y - d
left = center_x - d
precrop = img[top: top + 2 * d, left: left + 2 * d]
precrop = np.rot90(precrop, np.random.randint(low=0, high=4))
angle = np.random.uniform(low=-max_angle, high=max_angle)
precrop = ndimage.rotate(precrop, angle * 180 / np.pi, reshape=False)
precrop_h, precrop_w, _ = precrop.shape
top = (precrop_h - size) // 2
left = (precrop_w - size) // 2
crop = precrop[top: top + size, left: left + size]
if np.random.random() > 0.5:
crop = np.flipud(crop)
if np.random.random() > 0.5:
crop = np.fliplr(crop)
crops.append(crop)
crops = np.stack(crops)
assert crops.shape == (n, size, size, c)
return crops
def norm_pool(features, p=3):
"""Performs descriptor pooling
# Arguments
features: Numpy array of descriptors.
p: degree of pooling.
# Returns
Numpy array of pooled descriptor.
"""
return np.power(np.power(features, p).mean(axis=0), 1/p)
def encode(crops, model):
"""Encodes crops
# Arguments
crops: Numpy array of crops.
model: Keras encoder.
# Returns
Numpy array of pooled descriptor.
"""
features = model.predict(crops)
pooled_features = norm_pool(features)
return pooled_features
def process_image(image_file):
"""Extract multiple crops from a single image
# Arguments
image_file: Path to image.
# Yields
Numpy array of image crops.
"""
img = cv2.imread(image_file)
if SCALE != 1:
img = cv2.resize(img, None, fx=SCALE, fy=SCALE, interpolation=cv2.INTER_CUBIC)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_norm = normalize_staining(img)
for _ in range(AUGMENTATIONS_PER_IMAGE):
img_aug = hematoxylin_eosin_aug(img_norm, low=COLOR_LO, high=COLOR_HI)
# img_aug = zoom_aug(img_aug, ZOOM_VAR)
# single_image_crops = get_crops_free(img_aug, PATCH_SZ, PATCHES_PER_IMAGE)
single_image_crops = get_crops(img_aug, PATCH_SZ, PATCHES_PER_IMAGE)
yield single_image_crops
def crops_gen(file_list):
"""Generates batches of crops from image list, one augmentation a time
# Arguments
file_list: List of image files.
# Yields
Tuple of Numpy array of image crops and name of the file.
"""
for i, (image_file, output_file) in enumerate(file_list):
print("Crops generator:", i + 1)
for crops in process_image(image_file):
yield crops, output_file
def features_gen(crops_and_output_file, model):
"""Processes crop generator, encodes them and dumps pooled descriptors
# Arguments
crops_and_output_file: generator of crops and file names.
model: Keras encoder.
# Returns: None
"""
ts = time()
current_file = None
pooled_features = []
i = 0
for j, (crops, output_file) in enumerate(crops_and_output_file):
if current_file is None:
current_file = output_file
features = encode(crops, model)
if output_file == current_file:
pooled_features.append(features)
else:
np.save(current_file, np.stack(pooled_features))
pooled_features = [features]
current_file = output_file
average_time = int((time() - ts) / (i + 1))
print("Feature generator: {}, {} sec/image.".format(i + 1, average_time))
i += 1
if len(pooled_features) > 0:
np.save(current_file, np.stack(pooled_features))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
arg = parser.add_argument
arg("--images",
required=False,
default=DEFAULT_INPUT_DIR,
metavar="img_dir",
help="Input image directory. Default: data/train")
arg("--features",
required=False,
default=DEFAULT_PREPROCESSED_ROOT,
metavar="feat_dir",
help="Feature root dir. Default: data/preprocessed/train")
args = parser.parse_args()
INPUT_DIR = args.images
PREPROCESSED_ROOT = args.features
from models import ResNet, Inception, VGG
NN_MODELS = [ResNet, Inception, VGG]
input_files = recursive_glob(INPUT_DIR)
for SCALE in SCALES:
print("SCALE:", SCALE)
for NN_MODEL in NN_MODELS:
print("NN_MODEL:", NN_MODEL.__name__)
for PATCH_SZ in PATCH_SIZES:
print("PATCH_SZ:", PATCH_SZ)
PREPROCESSED_PATH = join(PREPROCESSED_ROOT, "{}-{}-{}".format(NN_MODEL.__name__, SCALE, PATCH_SZ))
if not exists(PREPROCESSED_PATH):
makedirs(PREPROCESSED_PATH)
model = NN_MODEL(batch_size=BATCH_SIZE)
output_files = [join(PREPROCESSED_PATH, basename(f).replace("tif", "npy")) for f in input_files]
file_list = zip(input_files, output_files)
crops_and_output_file = crops_gen(file_list)
crops_and_output_file_ = threaded_generator(crops_and_output_file, num_cached=NUM_CACHED)
features_gen(crops_and_output_file_, model)