-
Notifications
You must be signed in to change notification settings - Fork 266
/
Copy patharray_images.py
39 lines (32 loc) · 1.34 KB
/
array_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import ee
from ee_plugin import Map
# Define an Array of Tasseled Cap coefficients.
coefficients = ee.Array([
[0.3037, 0.2793, 0.4743, 0.5585, 0.5082, 0.1863],
[-0.2848, -0.2435, -0.5436, 0.7243, 0.0840, -0.1800],
[0.1509, 0.1973, 0.3279, 0.3406, -0.7112, -0.4572],
[-0.8242, 0.0849, 0.4392, -0.0580, 0.2012, -0.2768],
[-0.3280, 0.0549, 0.1075, 0.1855, -0.4357, 0.8085],
[0.1084, -0.9022, 0.4120, 0.0573, -0.0251, 0.0238]
])
# Load a Landsat 5 image, select the bands of interest.
image = ee.Image('LANDSAT/LT05/C01/T1_TOA/LT05_044034_20081011') \
.select(['B1', 'B2', 'B3', 'B4', 'B5', 'B7'])
# Make an Array Image, with a 1-D Array per pixel.
arrayImage1D = image.toArray()
# Make an Array Image with a 2-D Array per pixel, 6x1.
arrayImage2D = arrayImage1D.toArray(1)
# Do a matrix multiplication: 6x6 times 6x1.
componentsImage = ee.Image(coefficients) \
.matrixMultiply(arrayImage2D) \
.arrayProject([0]) \
.arrayFlatten(
[['brightness', 'greenness', 'wetness', 'fourth', 'fifth', 'sixth']])
# Display the first three bands of the result and the input imagery.
vizParams = {
'bands': ['brightness', 'greenness', 'wetness'],
'min': -0.1, 'max': [0.5, 0.1, 0.1]
}
Map.setCenter(-122.3, 37.562, 10)
Map.addLayer(image, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 0.5}, 'image')
Map.addLayer(componentsImage, vizParams, 'components')