forked from Vanint/SADE-AgnosticLT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
115 lines (93 loc) · 3.93 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import argparse
import torch
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
import model.Expert_ReActNet as reactnet
import numpy as np
from parse_config import ConfigParser
def main(config):
logger = config.get_logger('test')
# setup data_loader instances
data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size=256,
shuffle=False,
training=False,
num_workers=12
)
# build model architecture
# if 'returns_feat' in config['arch']['args']:
# model = config.init_obj('arch', module_arch, allow_override=True, returns_feat=False)
# else:
# model = config.init_obj('arch', module_arch)
model = reactnet.reactnet(**dict(config['arch']['args']))
# get function handles of loss and metrics
metric_fns = [getattr(module_metric, met) for met in config['metrics']]
logger.info('Loading checkpoint: {} ...'.format(config.resume))
checkpoint = torch.load(config.resume)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
total_metrics = torch.zeros(len(metric_fns))
num_classes = config._config["arch"]["args"]["num_classes"]
confusion_matrix = torch.zeros(num_classes, num_classes).cuda()
get_class_acc = True
if get_class_acc:
train_data_loader = getattr(module_data, config['data_loader']['type'])(
config['data_loader']['args']['data_dir'],
batch_size=256,
training=True
)
train_cls_num_list = np.array(train_data_loader.cls_num_list)
many_shot = train_cls_num_list > 100
medium_shot = (train_cls_num_list <= 100) & (train_cls_num_list >= 20)
few_shot = train_cls_num_list < 20
with torch.no_grad():
for i, (data, target) in enumerate(tqdm(data_loader)):
data, target = data.to(device), target.to(device)
output = model(data)
if type(output) == dict:
output = output['output']
batch_size = data.shape[0]
for i, metric in enumerate(metric_fns):
total_metrics[i] += metric(output, target) * batch_size
for t, p in zip(target.view(-1), output.argmax(dim=1).view(-1)):
confusion_matrix[t.long(), p.long()] += 1
acc_per_class = confusion_matrix.diag()/confusion_matrix.sum(1)
acc = acc_per_class.cpu().numpy()
many_shot_acc = acc[many_shot].mean()
medium_shot_acc = acc[medium_shot].mean()
few_shot_acc = acc[few_shot].mean()
n_samples = len(data_loader.sampler)
log = {}
log.update({
met.__name__: total_metrics[i].item() / n_samples for i, met in enumerate(metric_fns)
})
if get_class_acc:
log.update({
"many_class_num": many_shot.sum(),
"medium_class_num": medium_shot.sum(),
"few_class_num": few_shot.sum(),
"many_shot_acc": many_shot_acc,
"medium_shot_acc": medium_shot_acc,
"few_shot_acc": few_shot_acc,
})
logger.info(log)
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
config = ConfigParser.from_args(args)
main(config)