-
Notifications
You must be signed in to change notification settings - Fork 5
/
srresnet.py
67 lines (55 loc) · 2.49 KB
/
srresnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import torch
import torch.nn as nn
import math
class _Residual_Block(nn.Module):
def __init__(self):
super(_Residual_Block, self).__init__()
self.conv1 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(64)
def forward(self, x):
identity_data = x
output = self.relu(self.bn1(self.conv1(x)))
output = self.bn2(self.conv2(output))
output = torch.add(output,identity_data)
return output
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv_input = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=1, padding=1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.residual = self.make_layer(_Residual_Block, 15)
self.upscale4x = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False),
nn.PixelShuffle(2),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=64, out_channels=256, kernel_size=3, stride=1, padding=1, bias=False),
nn.PixelShuffle(2),
nn.ReLU(inplace=True),
)
self.conv_output = nn.Conv2d(in_channels=64, out_channels=3, kernel_size=3, stride=1, padding=1, bias=False)
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
if m.bias is not None:
m.bias.data.zero_()
def make_layer(self, block, num_of_layer):
layers = []
for _ in range(num_of_layer):
layers.append(block())
return nn.Sequential(*layers)
def forward(self, x):
out = self.relu(self.conv_input(x))
residual = out
out = self.residual(out)
out = torch.add(out,residual)
out = self.upscale4x(out)
out = self.conv_output(out)
return out