-
Notifications
You must be signed in to change notification settings - Fork 3
/
mim_cmt_finetune.py
425 lines (360 loc) · 17.9 KB
/
mim_cmt_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
import math
import logging
from functools import partial
from collections import OrderedDict
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
_logger = logging.getLogger(__name__)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'patch_embed.proj', 'classifier': 'head',
**kwargs
}
# A memory-efficient implementation of Swish function
class SwishImplementation(torch.autograd.Function):
@staticmethod
def forward(ctx, i):
result = i * torch.sigmoid(i)
ctx.save_for_backward(i)
return result
@staticmethod
def backward(ctx, grad_output):
i = ctx.saved_tensors[0]
sigmoid_i = torch.sigmoid(i)
return grad_output * (sigmoid_i * (1 + i * (1 - sigmoid_i)))
class MemoryEfficientSwish(nn.Module):
def forward(self, x):
return SwishImplementation.apply(x)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.conv1 = nn.Sequential(
nn.Conv2d(in_features, hidden_features, 1, 1, 0, bias=True),
nn.GELU(),
nn.BatchNorm2d(hidden_features, eps=1e-5),
)
self.proj = nn.Conv2d(hidden_features, hidden_features, 3, 1, 1, groups=hidden_features)
self.proj_act = nn.GELU()
self.proj_bn = nn.BatchNorm2d(hidden_features, eps=1e-5)
self.conv2 = nn.Sequential(
nn.Conv2d(hidden_features, out_features, 1, 1, 0, bias=True),
nn.BatchNorm2d(out_features, eps=1e-5),
)
self.drop = nn.Dropout(drop)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.permute(0, 2, 1).reshape(B, C, H, W)
x = self.conv1(x)
x = self.drop(x)
x = self.proj(x) + x
x = self.proj_act(x)
x = self.proj_bn(x)
x = self.conv2(x)
x = x.flatten(2).permute(0, 2, 1)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None,
attn_drop=0., proj_drop=0., qk_ratio=1, sr_ratio=1):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qk_dim = dim // qk_ratio
self.q = nn.Linear(dim, self.qk_dim, bias=qkv_bias)
self.k = nn.Linear(dim, self.qk_dim, bias=qkv_bias)
self.v = nn.Linear(dim, dim, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.sr_ratio = sr_ratio
# Exactly same as PVTv1
if self.sr_ratio > 1:
self.sr = nn.Sequential(
nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio, groups=dim, bias=True),
nn.BatchNorm2d(dim, eps=1e-5),
)
def forward(self, x, H, W, relative_pos):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, self.qk_dim // self.num_heads).permute(0, 2, 1, 3)
if self.sr_ratio > 1:
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
k = self.k(x_).reshape(B, -1, self.num_heads, self.qk_dim // self.num_heads).permute(0, 2, 1, 3)
v = self.v(x_).reshape(B, -1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
else:
k = self.k(x).reshape(B, N, self.num_heads, self.qk_dim // self.num_heads).permute(0, 2, 1, 3)
v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
attn = (q @ k.transpose(-2, -1)) * self.scale + relative_pos
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, qk_ratio=1, sr_ratio=1):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, qk_ratio=qk_ratio, sr_ratio=sr_ratio)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
self.proj = nn.Conv2d(dim, dim, 3, 1, 1, groups=dim)
def forward(self, x, H, W, relative_pos):
B, N, C = x.shape
cnn_feat = x.permute(0, 2, 1).reshape(B, C, H, W)
x = self.proj(cnn_feat) + cnn_feat
x = x.flatten(2).permute(0, 2, 1)
x = x + self.drop_path(self.attn(self.norm1(x), H, W, relative_pos))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
f"img_size {img_size} should be divided by patch_size {patch_size}."
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
x = self.norm(x)
H, W = H // self.patch_size[0], W // self.patch_size[1]
return x, (H, W)
class CMT(nn.Module):
def __init__(self, img_size=224, in_chans=3, num_classes=1000, embed_dims=[46,92,184,368], stem_channel=16, fc_dim=1280,
num_heads=[1,2,4,8], mlp_ratios=[3.6,3.6,3.6,3.6], qkv_bias=True, qk_scale=None, representation_size=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None,
depths=[2,2,10,2], qk_ratio=1, sr_ratios=[8,4,2,1], dp=0.1, **kwargs):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dims[-1]
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.depths = depths
self.stem_conv1 = nn.Conv2d(3, stem_channel, kernel_size=3, stride=2, padding=1, bias=True)
self.stem_relu1 = nn.GELU()
self.stem_norm1 = nn.BatchNorm2d(stem_channel, eps=1e-5)
self.stem_conv2 = nn.Conv2d(stem_channel, stem_channel, kernel_size=3, stride=1, padding=1, bias=True)
self.stem_relu2 = nn.GELU()
self.stem_norm2 = nn.BatchNorm2d(stem_channel, eps=1e-5)
self.stem_conv3 = nn.Conv2d(stem_channel, stem_channel, kernel_size=3, stride=1, padding=1, bias=True)
self.stem_relu3 = nn.GELU()
self.stem_norm3 = nn.BatchNorm2d(stem_channel, eps=1e-5)
self.patch_embed_a = PatchEmbed(
img_size=img_size//2, patch_size=2, in_chans=stem_channel, embed_dim=embed_dims[0])
self.patch_embed_b = PatchEmbed(
img_size=img_size//4, patch_size=2, in_chans=embed_dims[0], embed_dim=embed_dims[1])
self.patch_embed_c = PatchEmbed(
img_size=img_size//8, patch_size=2, in_chans=embed_dims[1], embed_dim=embed_dims[2])
self.patch_embed_d = PatchEmbed(
img_size=img_size//16, patch_size=2, in_chans=embed_dims[2], embed_dim=embed_dims[3])
self.relative_pos_a = nn.Parameter(torch.randn(
num_heads[0], self.patch_embed_a.num_patches, self.patch_embed_a.num_patches//sr_ratios[0]//sr_ratios[0]))
self.relative_pos_b = nn.Parameter(torch.randn(
num_heads[1], self.patch_embed_b.num_patches, self.patch_embed_b.num_patches//sr_ratios[1]//sr_ratios[1]))
self.relative_pos_c = nn.Parameter(torch.randn(
num_heads[2], self.patch_embed_c.num_patches, self.patch_embed_c.num_patches//sr_ratios[2]//sr_ratios[2]))
self.relative_pos_d = nn.Parameter(torch.randn(
num_heads[3], self.patch_embed_d.num_patches, self.patch_embed_d.num_patches//sr_ratios[3]//sr_ratios[3]))
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
_logger.info('drop path rate: %s', drop_path_rate)
cur = 0
self.blocks_a = nn.ModuleList([
Block(
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur+i],
norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[0])
for i in range(depths[0])])
cur += depths[0]
self.blocks_b = nn.ModuleList([
Block(
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur+i],
norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[1])
for i in range(depths[1])])
cur += depths[1]
self.blocks_c = nn.ModuleList([
Block(
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur+i],
norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[2])
for i in range(depths[2])])
cur += depths[2]
self.blocks_d = nn.ModuleList([
Block(
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias,
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur+i],
norm_layer=norm_layer, qk_ratio=qk_ratio, sr_ratio=sr_ratios[3])
for i in range(depths[3])])
# Representation layer
if representation_size:
self.num_features = representation_size
self.pre_logits = nn.Sequential(OrderedDict([
('fc', nn.Linear(embed_dim, representation_size)),
('act', nn.Tanh())
]))
else:
self.pre_logits = nn.Identity()
# Classifier head
self._fc = nn.Conv2d(embed_dims[-1], fc_dim, kernel_size=1)
self._bn = nn.BatchNorm2d(fc_dim, eps=1e-5)
self._swish = MemoryEfficientSwish()
self._avg_pooling = nn.AdaptiveAvgPool2d(1)
self._drop = nn.Dropout(dp)
self.head = nn.Linear(fc_dim, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if isinstance(m, nn.Conv2d) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def update_temperature(self):
for m in self.modules():
if isinstance(m, Attention):
m.update_temperature()
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
def get_num_layers(self):
return self.depths
def forward_features(self, x):
B = x.shape[0]
x = self.stem_conv1(x)
x = self.stem_relu1(x)
x = self.stem_norm1(x)
x = self.stem_conv2(x)
x = self.stem_relu2(x)
x = self.stem_norm2(x)
x = self.stem_conv3(x)
x = self.stem_relu3(x)
x = self.stem_norm3(x)
x, (H, W) = self.patch_embed_a(x)
for i, blk in enumerate(self.blocks_a):
x = blk(x, H, W, self.relative_pos_a)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x, (H, W) = self.patch_embed_b(x)
for i, blk in enumerate(self.blocks_b):
x = blk(x, H, W, self.relative_pos_b)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x, (H, W) = self.patch_embed_c(x)
for i, blk in enumerate(self.blocks_c):
x = blk(x, H, W, self.relative_pos_c)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
x, (H, W) = self.patch_embed_d(x)
for i, blk in enumerate(self.blocks_d):
x = blk(x, H, W, self.relative_pos_d)
B, N, C = x.shape
x = self._fc(x.permute(0, 2, 1).reshape(B, C, H, W))
x = self._bn(x)
x = self._swish(x)
x = self._avg_pooling(x).flatten(start_dim=1)
x = self._drop(x)
x = self.pre_logits(x)
return x
def forward(self, x):
x = self.forward_features(x)
x = self.head(x)
return x
def resize_pos_embed(posemb, posemb_new):
# Rescale the grid of position embeddings when loading from state_dict. Adapted from
# https://github.com/google-research/vision_transformer/blob/00883dd691c63a6830751563748663526e811cee/vit_jax/checkpoint.py#L224
_logger.info('Resized position embedding: %s to %s', posemb.shape, posemb_new.shape)
ntok_new = posemb_new.shape[1]
if True:
posemb_tok, posemb_grid = posemb[:, :1], posemb[0, 1:]
ntok_new -= 1
else:
posemb_tok, posemb_grid = posemb[:, :0], posemb[0]
gs_old = int(math.sqrt(len(posemb_grid)))
gs_new = int(math.sqrt(ntok_new))
_logger.info('Position embedding grid-size from %s to %s', gs_old, gs_new)
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
posemb_grid = F.interpolate(posemb_grid, size=(gs_new, gs_new), mode='bilinear')
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_new * gs_new, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def checkpoint_filter_fn(state_dict, model):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
if 'model' in state_dict:
# For deit models
state_dict = state_dict['model']
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k and len(v.shape) < 4:
# For old models that I trained prior to conv based patchification
O, I, H, W = model.patch_embed.proj.weight.shape
v = v.reshape(O, -1, H, W)
elif k == 'pos_embed' and v.shape != model.pos_embed.shape:
# To resize pos embedding when using model at different size from pretrained weights
v = resize_pos_embed(v, model.pos_embed)
out_dict[k] = v
return out_dict
def _create_cmt_model(pretrained=False, distilled=False, **kwargs):
default_cfg = _cfg()
default_num_classes = default_cfg['num_classes']
default_img_size = default_cfg['input_size'][-1]
num_classes = kwargs.pop('num_classes', default_num_classes)
img_size = kwargs.pop('img_size', default_img_size)
repr_size = kwargs.pop('representation_size', None)
if repr_size is not None and num_classes != default_num_classes:
# Remove representation layer if fine-tuning. This may not always be the desired action,
# but I feel better than doing nothing by default for fine-tuning. Perhaps a better interface?
_logger.warning("Removing representation layer for fine-tuning.")
repr_size = None
model = CMT(img_size=img_size, num_classes=num_classes, representation_size=repr_size, **kwargs)
model.default_cfg = default_cfg
if pretrained:
load_pretrained(
model, num_classes=num_classes, in_chans=kwargs.get('in_chans', 3),
filter_fn=partial(checkpoint_filter_fn, model=model))
return model
@register_model
def cmt_small(pretrained=False, **kwargs):
model_kwargs = dict(
qkv_bias=True, embed_dims=[64,128,256,512], stem_channel=32, num_heads=[1,2,4,8],
depths=[3,3,16,3], mlp_ratios=[4,4,4,4], qk_ratio=1, sr_ratios=[8,4,2,1], **kwargs)
model = _create_cmt_model(pretrained=pretrained, **model_kwargs)
return model