diff --git a/CMakeLists.txt b/CMakeLists.txt index f32df5fe52335..3a498abee2f52 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -1,8 +1,34 @@ cmake_minimum_required(VERSION 3.13) # for add_link_options project("llama.cpp" C CXX) -set(CMAKE_EXPORT_COMPILE_COMMANDS ON) +if (NOT MSVC) + set(cuda_flags -Wno-pedantic) +endif() +set(LLAMA_CUBLAS ON) +set(CMAKE_EXPORT_COMPILE_COMMANDS ON) +set(LLAMA_CUDA_F16 ON) +set(LLAMA_ACCELERATE ON) +set(LLAMA_K_QUANTS ON) + +#-DLLAMA_NATIVE=off +set(LLAMA_AVX ON) +set(LLAMA_AVX2 OFF) +set(LLAMA_AVX512 OFF) +set(LLAMA_FMA OFF) +set(LLAMA_F16C OFF) +set(CMAKE_CUDA_FLAGS "--verbose") # +set(CMAKE_CUDA_ARCHITECTURES "60;61;70") # needed for f16 CUDA intrinsics +set(CUDACXX /usr/local/cuda-12.3/bin/nvcc) +set(CMAKE_CUDA_COMPILER /usr/local/cuda-12.3/bin/nvcc) +set(CUDA_TOOLKIT_ROOT_DIR /usr/local/cuda-12.3) +#GGML_USE_CUBLAS + +#set(CMAKE_EXE_LINKER_FLAGS -pg) +#set(CMAKE_SHARED_LINKER_FLAGS -pg) + +set(CMAKE_BUILD_TYPE Debug CACHE STRING "Build type" FORCE) + if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE) set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE) set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo") @@ -44,7 +70,7 @@ endif() # general option(LLAMA_STATIC "llama: static link libraries" OFF) -option(LLAMA_NATIVE "llama: enable -march=native flag" ON) +option(LLAMA_NATIVE "llama: enable -march=native flag" OFF) option(LLAMA_LTO "llama: enable link time optimization" OFF) # debug @@ -77,9 +103,9 @@ endif() # 3rd party libs option(LLAMA_ACCELERATE "llama: enable Accelerate framework" ON) -option(LLAMA_BLAS "llama: use BLAS" OFF) +option(LLAMA_BLAS "llama: use BLAS" ON) set(LLAMA_BLAS_VENDOR "Generic" CACHE STRING "llama: BLAS library vendor") -option(LLAMA_CUBLAS "llama: use CUDA" OFF) +option(LLAMA_CUBLAS "llama: use CUDA" ON) #option(LLAMA_CUDA_CUBLAS "llama: use cuBLAS for prompt processing" OFF) option(LLAMA_CUDA_FORCE_DMMV "llama: use dmmv instead of mmvq CUDA kernels" OFF) option(LLAMA_CUDA_FORCE_MMQ "llama: use mmq kernels instead of cuBLAS" OFF) @@ -104,7 +130,7 @@ option(LLAMA_BUILD_SERVER "llama: build server example" # Compile flags # -set(CMAKE_CXX_STANDARD 11) +set(CMAKE_CXX_STANDARD 17) set(CMAKE_CXX_STANDARD_REQUIRED true) set(CMAKE_C_STANDARD 11) set(CMAKE_C_STANDARD_REQUIRED true) @@ -230,7 +256,12 @@ if (LLAMA_BLAS) message(STATUS "BLAS found, Includes: ${BLAS_INCLUDE_DIRS}") add_compile_options(${BLAS_LINKER_FLAGS}) - add_compile_definitions(GGML_USE_OPENBLAS) + + # from https://github.com/NVIDIA/cutlass + make_directory("${PROJECT_BINARY_DIR}/nvcc_tmp") + set(cuda_flags --keep "SHELL:--keep-dir ${PROJECT_BINARY_DIR}/nvcc_tmp" ${cuda_flags}) + + # add_compile_definitions(GGML_USE_OPENBLAS) if (${BLAS_INCLUDE_DIRS} MATCHES "mkl" AND (${LLAMA_BLAS_VENDOR} MATCHES "Generic" OR ${LLAMA_BLAS_VENDOR} MATCHES "Intel")) add_compile_definitions(GGML_BLAS_USE_MKL) endif() @@ -272,6 +303,7 @@ if (LLAMA_CUBLAS) endif() add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X}) add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y}) + if (DEFINED LLAMA_CUDA_DMMV_Y) add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_DMMV_Y}) # for backwards compatibility endif() @@ -312,7 +344,7 @@ if (LLAMA_MPI) if (MPI_C_FOUND) message(STATUS "MPI found") set(GGML_HEADERS_MPI ggml-mpi.h) - set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h) + set(GGML_SOURCES_MPI ggml-mpi.cpp ggml-mpi.h) add_compile_definitions(GGML_USE_MPI) add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS}) if (NOT MSVC) @@ -390,14 +422,15 @@ endif() if (LLAMA_ALL_WARNINGS) if (NOT MSVC) - set(warning_flags -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function) + # -Wpedantic + set(warning_flags -Wall -Wextra -Wcast-qual -Wno-unused-function) set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int -Werror=implicit-function-declaration) - set(cxx_flags -Wmissing-declarations -Wmissing-noreturn) + set(cxx_flags -Wmissing-declarations -Wmissing-noreturn -fpermissive) set(host_cxx_flags "") if (CMAKE_C_COMPILER_ID MATCHES "Clang") set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return) - set(host_cxx_flags ${host_cxx_flags} -Wmissing-prototypes -Wextra-semi) + set(host_cxx_flags ${host_cxx_flags} -Wmissing-prototypes -Wextra-semi -fpermissive) if ( (CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR @@ -407,30 +440,27 @@ if (LLAMA_ALL_WARNINGS) endif() elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU") set(c_flags ${c_flags} -Wdouble-promotion) - set(host_cxx_flags ${host_cxx_flags} -Wno-array-bounds) + set(host_cxx_flags ${host_cxx_flags} -Wno-array-bounds -fpermissive) if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0) - set(host_cxx_flags ${host_cxx_flags} -Wno-format-truncation) + set(host_cxx_flags ${host_cxx_flags} -Wno-format-truncation -fpermissive) endif() if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0) - set(host_cxx_flags ${host_cxx_flags} -Wextra-semi) + set(host_cxx_flags ${host_cxx_flags} -Wextra-semi -fpermissive) endif() endif() else() # todo : msvc endif() - set(c_flags ${c_flags} ${warning_flags}) - set(cxx_flags ${cxx_flags} ${warning_flags}) + set(c_flags ${c_flags} -save-temps --verbose ${warning_flags}) + set(cxx_flags ${cxx_flags} -fpermissive -save-temps --verbose ${warning_flags}) add_compile_options("$<$:${c_flags}>" "$<$:${cxx_flags}>" "$<$:${host_cxx_flags}>") endif() -if (NOT MSVC) - set(cuda_flags -Wno-pedantic) -endif() set(cuda_flags ${cxx_flags} -use_fast_math ${cuda_flags}) list(JOIN host_cxx_flags " " cuda_host_flags) # pass host compiler flags as a single argument @@ -438,6 +468,9 @@ if (NOT cuda_host_flags STREQUAL "") set(cuda_flags ${cuda_flags} -Xcompiler ${cuda_host_flags}) endif() +# +set(cuda_flags --verbose -G ${cuda_flags}) + add_compile_options("$<$:${cuda_flags}>") if (WIN32) @@ -485,8 +518,10 @@ if (NOT MSVC) add_link_options(-static-libgcc -static-libstdc++) endif() endif() + add_link_options("-Wl,-Map=${TARGET}.map") + if (LLAMA_GPROF) - add_compile_options(-pg) + add_compile_options(-pg) endif() endif() @@ -645,13 +680,13 @@ if (GGML_USE_CPU_HBM) endif() add_library(ggml OBJECT - ggml.c + ggml.cpp ggml.h - ggml-alloc.c + ggml-alloc.cpp ggml-alloc.h - ggml-backend.c + ggml-backend.cpp ggml-backend.h - ggml-quants.c + ggml-quants.cpp ggml-quants.h ${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA} ${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL} diff --git a/Makefile b/Makefile index a6d2c2ec0f380..c61580b7fef65 100644 --- a/Makefile +++ b/Makefile @@ -116,7 +116,7 @@ endif # keep standard at C11 and C++11 MK_CPPFLAGS = -I. -Icommon MK_CFLAGS = -std=c11 -fPIC -MK_CXXFLAGS = -std=c++11 -fPIC +MK_CXXFLAGS = -std=c++17 -fPIC -fpermissive # -Ofast tends to produce faster code, but may not be available for some compilers. ifdef LLAMA_FAST @@ -502,7 +502,7 @@ ggml-metal.o: ggml-metal.m ggml-metal.h endif # LLAMA_METAL ifdef LLAMA_MPI -ggml-mpi.o: ggml-mpi.c ggml-mpi.h +ggml-mpi.o: ggml-mpi.cpp ggml-mpi.h $(CC) $(CFLAGS) -c $< -o $@ endif # LLAMA_MPI @@ -537,17 +537,17 @@ $(info ) # Build library # -ggml.o: ggml.c ggml.h ggml-cuda.h - $(CC) $(CFLAGS) -c $< -o $@ +ggml.o: ggml.cpp ggml.h ggml-cuda.h + $(CXX) $(CXXFLAGS) -c $< -o $@ -ggml-alloc.o: ggml-alloc.c ggml.h ggml-alloc.h - $(CC) $(CFLAGS) -c $< -o $@ +ggml-alloc.o: ggml-alloc.cpp ggml.h ggml-alloc.h + $(CXX) $(CXXFLAGS) -c $< -o $@ -ggml-backend.o: ggml-backend.c ggml.h ggml-backend.h - $(CC) $(CFLAGS) -c $< -o $@ +ggml-backend.o: ggml-backend.cpp ggml.h ggml-backend.h + $(CXX) $(CXXFLAGS) -c $< -o $@ -ggml-quants.o: ggml-quants.c ggml.h ggml-quants.h - $(CC) $(CFLAGS) -c $< -o $@ +ggml-quants.o: ggml-quants.cpp ggml.h ggml-quants.h + $(CXX) $(CXXFLAGS) -c $< -o $@ OBJS += ggml-alloc.o ggml-backend.o ggml-quants.o diff --git a/README.md b/README.md index e14886737121b..d3b92a75a7373 100644 --- a/README.md +++ b/README.md @@ -696,7 +696,7 @@ PROMPT_TEMPLATE=./prompts/chat-with-bob.txt PROMPT_CACHE_FILE=bob.prompt.bin \ The `grammars/` folder contains a handful of sample grammars. To write your own, check out the [GBNF Guide](./grammars/README.md). -For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets you write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one. +For authoring more complex JSON grammars, you can also check out https://grammar.intrinsiclabs.ai/, a browser app that lets ygou write TypeScript interfaces which it compiles to GBNF grammars that you can save for local use. Note that the app is built and maintained by members of the community, please file any issues or FRs on [its repo](http://github.com/intrinsiclabsai/gbnfgen) and not this one. ### Instruction mode with Alpaca diff --git a/README.org b/README.org new file mode 100644 index 0000000000000..4f7092f93d82f --- /dev/null +++ b/README.org @@ -0,0 +1,1039 @@ +This readme is showing how to use mistral using llama.cpp and cuda profiling nsys to collect data. + +#+begin_src sh :results verbatim :exports both + /home/mdupont/2023/11/07/nvidia-cuda-toolkit-11.5.1/amd64/cuda_cuobjdump/bin/cuobjdump --dump-ptx ./build/bin/main > ./build/bin/main.ptx +#end_example + + Now to run llama.cpp with model downloaded from ollama we can do it like this + +#+begin_src sh :results verbatim :exports both + sudo /opt/nvidia/nsight-systems/2023.2.3/bin/nsys profile --show-output=true --trace=cuda,nvtx,cublas,cublas-verbose,cusparse,cusparse-verbose,mpi,oshmem,ucx,osrt,cudnn,opengl,opengl-annotations,openacc,openmp,nvvideo --sample=process-tree --cudabacktrace=all ./build/bin/main -m ~/.ollama/models/blobs/sha256:6ae28029995007a3ee8d0b8556d50f3b59b831074cf19c84de87acf51fb54054 -f prompt.org +#+end_src + +#+RESULTS: +#+begin_example +This readme is showing how to use mistral using llama.cpp and cuda profiling nsys to collect data. + +,#+begin_src sh :results verbatim :exports both + /home/mdupont/2023/11/07/nvidia-cuda-toolkit-11.5.1/amd64/cuda_cuobjdump/bin/cuobjdump --dump-ptx ./build/bin/main > ./build/bin/main.ptx +#end_example + + Now to run llama.cpp with model downloaded from ollama we can do it like this + +,#+begin_src sh :results verbatim :exports both + sudo /opt/nvidia/nsight-systems/2023.2.3/bin/nsys profile --show-output=true --trace=cuda,nvtx,cublas,cublas-verbose,cusparse,cusparse-verbose,mpi,oshmem,ucx,osrt,cudnn,opengl,opengl-annotations,openacc,openmp,nvvideo --sample=process-tree --cudabacktrace=all ./build/bin/main -m ~/.ollama/models/blobs/sha256:6ae28029995007a3ee8d0b8556d50f3b59b831074cf19c84de87acf51fb54054 -f README.org +,#+end_src + + Here we can see the data collected by nsys: + + ,#+begin_example data + ===nsys=== + ====/path/to/bin/main=== + + ===Profile Summary===== + Total Samples = 30956 + Sample Rate = 16.102757 Hz + + CPU Samples: + Instructions Executed = 6469108233 + Flops Executed = 6145482438.736761 + Floats Executed = 20133734308.689648 + Memory Accesses = 309559 + Register Accesses = 102771 + Branch Taken = 149 + Branch Missed = 378 + Static Branchs Executed = 17 + Dynamic Branchs Executed = 5 + GPU Samples: + Instructions Executed = 163111268848 + Flops Executed = 15056925654.22184 + Floats Executed = 20133734308.689648 + Memory Accesses = 172190 + Register Accesses = 43252 + Branch Taken = 29 + Branch Missed = 393 + Static Branchs Executed = 2 + Dynamic Branchs Executed = 6 + ===Profile Details===== + ====/path/to/bin/main=== + ====Total Samples===== + Instructions Executed = 179422513688 + Flops Executed = 30190359948.90951 + Floats Executed = 20133734308.689648 + Memory Accesses = 481749 + Register Accesses = 146023 + Branch Taken = 162 + Branch Missed = 415 + Static Branchs Executed = 17 + Dynamic Branchs Executed = 5 + ====Instruction Details===== + + ====Memory Access Details===== + + ====Register Access Details===== + + ====Branching Details===== + + ====/path/to/bin/main=== + ====Function Calls===== + Function Name | Samples | Flops Executed + + ====Function Returns===== + Function Name | Samples | Flops Executed + + ====Code Coverage===== + + ====Heap Usage===== + + ====Stack Usage===== + +#include +#include +#include "gtest/gtest.h" +using namespace testing; +class TestMyCode : public Test { +protected: + // Set up any needed data or environment variables before each test case. +}; +TEST_F(TestMyCode, TestCase1) { + // Test code for TestCase1 goes here. +} +TEST_F(TestMyCode, TestCase2) { + // Test code for TestCase2 goes here. +} +int main() { + InitGoogleTest(); + RunAllTests(new MySuite()); + CleanUpGoogleTest(); + return EXIT_SUCCESS; +}Generating '/tmp/nsys-report-d862.qdstrm' + [1/1] [0% ] report7.nsys-rep [1/1] [0% ] report7.nsys-rep [1/1] [===========50% ] report7.nsys-rep [1/1] [========================100%] report7.nsys-rep [1/1] [0% ] report7.nsys-rep [1/1] [5% ] report7.nsys-rep [1/1] [7% ] report7.nsys-rep [1/1] [9% ] report7.nsys-rep [1/1] [10% ] report7.nsys-rep [1/1] [12% ] report7.nsys-rep [1/1] [14% ] report7.nsys-rep [1/1] [=15% ] report7.nsys-rep [1/1] [=17% ] report7.nsys-rep [1/1] [==19% ] report7.nsys-rep [1/1] [==21% ] report7.nsys-rep [1/1] [===22% ] report7.nsys-rep [1/1] [===24% ] report7.nsys-rep [1/1] [====26% ] report7.nsys-rep [1/1] [====27% ] report7.nsys-rep [1/1] [=====29% ] report7.nsys-rep [1/1] [=====31% ] report7.nsys-rep [1/1] [=====32% ] report7.nsys-rep [1/1] [======34% ] report7.nsys-rep [1/1] [=======36% ] report7.nsys-rep [1/1] [=======37% ] report7.nsys-rep [1/1] [=======39% ] report7.nsys-rep [1/1] [========41% ] report7.nsys-rep [1/1] [========42% ] report7.nsys-rep [1/1] [=========44% ] report7.nsys-rep [1/1] [=========45% ] report7.nsys-rep [1/1] [==========47% ] report7.nsys-rep [1/1] [==========48% ] report7.nsys-rep [1/1] [==========49% ] report7.nsys-rep [1/1] [===========50% ] report7.nsys-rep [1/1] [===========51% ] report7.nsys-rep [1/1] [===========52% ] report7.nsys-rep [1/1] [===========53% ] report7.nsys-rep [1/1] [============54% ] report7.nsys-rep [1/1] [============55% ] report7.nsys-rep [1/1] [============56% ] report7.nsys-rep [1/1] [============57% ] report7.nsys-rep [1/1] [=============58% ] report7.nsys-rep [1/1] [=============59% ] report7.nsys-rep [1/1] [=============60% ] report7.nsys-rep [1/1] [==============61% ] report7.nsys-rep [1/1] [==============62% ] report7.nsys-rep [1/1] [==============63% ] report7.nsys-rep [1/1] [==============64% ] report7.nsys-rep [1/1] [===============65% ] report7.nsys-rep [1/1] [===============66% ] report7.nsys-rep [1/1] [===============67% ] report7.nsys-rep [1/1] [================68% ] report7.nsys-rep [1/1] [================69% ] report7.nsys-rep [1/1] [================70% ] report7.nsys-rep [1/1] [================71% ] report7.nsys-rep [1/1] [=================72% ] report7.nsys-rep [1/1] [=================73% ] report7.nsys-rep [1/1] [=================74% ] report7.nsys-rep [1/1] [==================75% ] report7.nsys-rep [1/1] [==================76% ] report7.nsys-rep [1/1] [==================77% ] report7.nsys-rep [1/1] [==================78% ] report7.nsys-rep [1/1] [===================79% ] report7.nsys-rep [1/1] [===================80% ] report7.nsys-rep [1/1] [===================81% ] report7.nsys-rep [1/1] [===================82% ] report7.nsys-rep [1/1] [====================83% ] report7.nsys-rep [1/1] [====================84% ] report7.nsys-rep [1/1] [====================85% ] report7.nsys-rep [1/1] [=====================86% ] report7.nsys-rep [1/1] [=====================87% ] report7.nsys-rep [1/1] [=====================88% ] report7.nsys-rep [1/1] [=====================89% ] report7.nsys-rep [1/1] [======================90% ] report7.nsys-rep [1/1] [======================91% ] report7.nsys-rep [1/1] [======================92% ] report7.nsys-rep [1/1] [=======================93% ] report7.nsys-rep [1/1] [=======================94% ] report7.nsys-rep [1/1] [=======================95% ] report7.nsys-rep [1/1] [=======================96% ] report7.nsys-rep [1/1] [========================97% ] report7.nsys-rep [1/1] [========================98% ] report7.nsys-rep [1/1] [========================99% ] report7.nsys-rep [1/1] [========================100%] report7.nsys-rep [1/1] [========================100%] report7.nsys-rep +Generated: + /mnt/data1/2023/11/09/llama.cpp/report7.nsys-rep +#+end_example +Log start +main: build = 1503 (5519834) +main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu +main: seed = 1699536977 +ggml_init_cublas: GGML_CUDA_FORCE_MMQ: no +ggml_init_cublas: CUDA_USE_TENSOR_CORES: yes +ggml_init_cublas: found 1 CUDA devices: + Device 0: NVIDIA GeForce RTX 3080 Ti, compute capability 8.6 +llama_model_loader: loaded meta data with 20 key-value pairs and 291 tensors from /home/mdupont/.ollama/models/blobs/sha256:6ae28029995007a3ee8d0b8556d50f3b59b831074cf19c84de87acf51fb54054 (version GGUF V2) +llama_model_loader: - tensor 0: token_embd.weight q4_0 [ 4096, 32000, 1, 1 ] +llama_model_loader: - tensor 1: blk.0.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 2: blk.0.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 3: blk.0.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 4: blk.0.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 5: blk.0.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 6: blk.0.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 7: blk.0.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 8: blk.0.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 9: blk.0.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 10: blk.1.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 11: blk.1.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 12: blk.1.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 13: blk.1.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 14: blk.1.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 15: blk.1.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 16: blk.1.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 17: blk.1.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 18: blk.1.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 19: blk.2.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 20: blk.2.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 21: blk.2.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 22: blk.2.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 23: blk.2.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 24: blk.2.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 25: blk.2.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 26: blk.2.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 27: blk.2.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 28: blk.3.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 29: blk.3.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 30: blk.3.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 31: blk.3.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 32: blk.3.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 33: blk.3.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 34: blk.3.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 35: blk.3.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 36: blk.3.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 37: blk.4.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 38: blk.4.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 39: blk.4.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 40: blk.4.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 41: blk.4.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 42: blk.4.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 43: blk.4.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 44: blk.4.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 45: blk.4.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 46: blk.5.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 47: blk.5.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 48: blk.5.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 49: blk.5.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 50: blk.5.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 51: blk.5.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 52: blk.5.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 53: blk.5.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 54: blk.5.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 55: blk.6.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 56: blk.6.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 57: blk.6.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 58: blk.6.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 59: blk.6.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 60: blk.6.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 61: blk.6.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 62: blk.6.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 63: blk.6.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 64: blk.7.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 65: blk.7.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 66: blk.7.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 67: blk.7.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 68: blk.7.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 69: blk.7.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 70: blk.7.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 71: blk.7.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 72: blk.7.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 73: blk.8.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 74: blk.8.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 75: blk.8.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 76: blk.8.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 77: blk.8.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 78: blk.8.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 79: blk.8.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 80: blk.8.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 81: blk.8.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 82: blk.9.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 83: blk.9.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 84: blk.9.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 85: blk.9.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 86: blk.9.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 87: blk.9.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 88: blk.9.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 89: blk.9.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 90: blk.9.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 91: blk.10.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 92: blk.10.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 93: blk.10.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 94: blk.10.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 95: blk.10.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 96: blk.10.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 97: blk.10.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 98: blk.10.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 99: blk.10.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 100: blk.11.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 101: blk.11.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 102: blk.11.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 103: blk.11.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 104: blk.11.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 105: blk.11.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 106: blk.11.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 107: blk.11.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 108: blk.11.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 109: blk.12.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 110: blk.12.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 111: blk.12.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 112: blk.12.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 113: blk.12.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 114: blk.12.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 115: blk.12.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 116: blk.12.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 117: blk.12.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 118: blk.13.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 119: blk.13.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 120: blk.13.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 121: blk.13.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 122: blk.13.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 123: blk.13.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 124: blk.13.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 125: blk.13.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 126: blk.13.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 127: blk.14.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 128: blk.14.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 129: blk.14.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 130: blk.14.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 131: blk.14.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 132: blk.14.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 133: blk.14.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 134: blk.14.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 135: blk.14.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 136: blk.15.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 137: blk.15.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 138: blk.15.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 139: blk.15.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 140: blk.15.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 141: blk.15.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 142: blk.15.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 143: blk.15.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 144: blk.15.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 145: blk.16.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 146: blk.16.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 147: blk.16.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 148: blk.16.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 149: blk.16.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 150: blk.16.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 151: blk.16.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 152: blk.16.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 153: blk.16.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 154: blk.17.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 155: blk.17.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 156: blk.17.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 157: blk.17.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 158: blk.17.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 159: blk.17.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 160: blk.17.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 161: blk.17.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 162: blk.17.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 163: blk.18.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 164: blk.18.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 165: blk.18.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 166: blk.18.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 167: blk.18.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 168: blk.18.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 169: blk.18.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 170: blk.18.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 171: blk.18.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 172: blk.19.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 173: blk.19.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 174: blk.19.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 175: blk.19.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 176: blk.19.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 177: blk.19.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 178: blk.19.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 179: blk.19.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 180: blk.19.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 181: blk.20.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 182: blk.20.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 183: blk.20.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 184: blk.20.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 185: blk.20.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 186: blk.20.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 187: blk.20.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 188: blk.20.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 189: blk.20.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 190: blk.21.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 191: blk.21.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 192: blk.21.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 193: blk.21.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 194: blk.21.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 195: blk.21.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 196: blk.21.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 197: blk.21.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 198: blk.21.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 199: blk.22.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 200: blk.22.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 201: blk.22.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 202: blk.22.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 203: blk.22.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 204: blk.22.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 205: blk.22.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 206: blk.22.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 207: blk.22.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 208: blk.23.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 209: blk.23.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 210: blk.23.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 211: blk.23.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 212: blk.23.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 213: blk.23.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 214: blk.23.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 215: blk.23.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 216: blk.23.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 217: blk.24.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 218: blk.24.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 219: blk.24.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 220: blk.24.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 221: blk.24.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 222: blk.24.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 223: blk.24.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 224: blk.24.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 225: blk.24.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 226: blk.25.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 227: blk.25.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 228: blk.25.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 229: blk.25.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 230: blk.25.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 231: blk.25.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 232: blk.25.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 233: blk.25.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 234: blk.25.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 235: blk.26.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 236: blk.26.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 237: blk.26.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 238: blk.26.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 239: blk.26.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 240: blk.26.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 241: blk.26.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 242: blk.26.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 243: blk.26.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 244: blk.27.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 245: blk.27.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 246: blk.27.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 247: blk.27.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 248: blk.27.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 249: blk.27.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 250: blk.27.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 251: blk.27.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 252: blk.27.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 253: blk.28.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 254: blk.28.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 255: blk.28.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 256: blk.28.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 257: blk.28.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 258: blk.28.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 259: blk.28.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 260: blk.28.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 261: blk.28.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 262: blk.29.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 263: blk.29.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 264: blk.29.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 265: blk.29.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 266: blk.29.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 267: blk.29.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 268: blk.29.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 269: blk.29.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 270: blk.29.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 271: blk.30.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 272: blk.30.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 273: blk.30.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 274: blk.30.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 275: blk.30.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 276: blk.30.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 277: blk.30.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 278: blk.30.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 279: blk.30.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 280: blk.31.attn_q.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 281: blk.31.attn_k.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 282: blk.31.attn_v.weight q4_0 [ 4096, 1024, 1, 1 ] +llama_model_loader: - tensor 283: blk.31.attn_output.weight q4_0 [ 4096, 4096, 1, 1 ] +llama_model_loader: - tensor 284: blk.31.ffn_gate.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 285: blk.31.ffn_up.weight q4_0 [ 4096, 14336, 1, 1 ] +llama_model_loader: - tensor 286: blk.31.ffn_down.weight q4_0 [ 14336, 4096, 1, 1 ] +llama_model_loader: - tensor 287: blk.31.attn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 288: blk.31.ffn_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 289: output_norm.weight f32 [ 4096, 1, 1, 1 ] +llama_model_loader: - tensor 290: output.weight q6_K [ 4096, 32000, 1, 1 ] +llama_model_loader: - kv 0: general.architecture str +llama_model_loader: - kv 1: general.name str +llama_model_loader: - kv 2: llama.context_length u32 +llama_model_loader: - kv 3: llama.embedding_length u32 +llama_model_loader: - kv 4: llama.block_count u32 +llama_model_loader: - kv 5: llama.feed_forward_length u32 +llama_model_loader: - kv 6: llama.rope.dimension_count u32 +llama_model_loader: - kv 7: llama.attention.head_count u32 +llama_model_loader: - kv 8: llama.attention.head_count_kv u32 +llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 +llama_model_loader: - kv 10: llama.rope.freq_base f32 +llama_model_loader: - kv 11: general.file_type u32 +llama_model_loader: - kv 12: tokenizer.ggml.model str +llama_model_loader: - kv 13: tokenizer.ggml.tokens arr +llama_model_loader: - kv 14: tokenizer.ggml.scores arr +llama_model_loader: - kv 15: tokenizer.ggml.token_type arr +llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 +llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 +llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 +llama_model_loader: - kv 19: general.quantization_version u32 +llama_model_loader: - type f32: 65 tensors +llama_model_loader: - type q4_0: 225 tensors +llama_model_loader: - type q6_K: 1 tensors +llm_load_vocab: special tokens definition check successful ( 259/32000 ). +llm_load_print_meta: format = GGUF V2 +llm_load_print_meta: arch = llama +llm_load_print_meta: vocab type = SPM +llm_load_print_meta: n_vocab = 32000 +llm_load_print_meta: n_merges = 0 +llm_load_print_meta: n_ctx_train = 32768 +llm_load_print_meta: n_embd = 4096 +llm_load_print_meta: n_head = 32 +llm_load_print_meta: n_head_kv = 8 +llm_load_print_meta: n_layer = 32 +llm_load_print_meta: n_rot = 128 +llm_load_print_meta: n_gqa = 4 +llm_load_print_meta: f_norm_eps = 0.0e+00 +llm_load_print_meta: f_norm_rms_eps = 1.0e-05 +llm_load_print_meta: f_clamp_kqv = 0.0e+00 +llm_load_print_meta: f_max_alibi_bias = 0.0e+00 +llm_load_print_meta: n_ff = 14336 +llm_load_print_meta: rope scaling = linear +llm_load_print_meta: freq_base_train = 10000.0 +llm_load_print_meta: freq_scale_train = 1 +llm_load_print_meta: n_yarn_orig_ctx = 32768 +llm_load_print_meta: rope_finetuned = unknown +llm_load_print_meta: model type = 7B +llm_load_print_meta: model ftype = mostly Q4_0 +llm_load_print_meta: model params = 7.24 B +llm_load_print_meta: model size = 3.83 GiB (4.54 BPW) +llm_load_print_meta: general.name = mistralai +llm_load_print_meta: BOS token = 1 '' +llm_load_print_meta: EOS token = 2 '' +llm_load_print_meta: UNK token = 0 '' +llm_load_print_meta: LF token = 13 '<0x0A>' +llm_load_tensors: ggml ctx size = 0.11 MB +llm_load_tensors: using CUDA for GPU acceleration +llm_load_tensors: mem required = 3917.97 MB +llm_load_tensors: offloading 0 repeating layers to GPU +llm_load_tensors: offloaded 0/35 layers to GPU +llm_load_tensors: VRAM used: 0.00 MB +.................................................................................................. +llama_new_context_with_model: n_ctx = 512 +llama_new_context_with_model: freq_base = 10000.0 +llama_new_context_with_model: freq_scale = 1 +llama_new_context_with_model: kv self size = 64.00 MB +llama_build_graph: non-view tensors processed: 740/740 +llama_new_context_with_model: compute buffer total size = 79.63 MB +llama_new_context_with_model: VRAM scratch buffer: 73.00 MB +llama_new_context_with_model: total VRAM used: 73.00 MB (model: 0.00 MB, context: 73.00 MB) + +system_info: n_threads = 12 / 24 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | +sampling: + repeat_last_n = 64, repeat_penalty = 1.100, frequency_penalty = 0.000, presence_penalty = 0.000 + top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800 + mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000 +generate: n_ctx = 512, n_batch = 512, n_predict = -1, n_keep = 0 + + + [end of text] + +llama_print_timings: load time = 245.80 ms +llama_print_timings: sample time = 6.71 ms / 52 runs ( 0.13 ms per token, 7748.47 tokens per second) +llama_print_timings: prompt eval time = 0.00 ms / 1 tokens ( 0.00 ms per token, inf tokens per second) +llama_print_timings: eval time = 5098.77 ms / 52 runs ( 98.05 ms per token, 10.20 tokens per second) +llama_print_timings: total time = 5161.43 ms +Log end +[ Babel evaluation exited with code 0 ] + + +#+begin_src sh :results verbatim :exports both + /opt/nvidia/nsight-systems/2023.2.3/bin/nsys stats report7.nsys-rep +#+end_src + +#+RESULTS: +#+begin_example +Generating SQLite file report7.sqlite from report7.nsys-rep +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/nvtx_sum.py]... + + ,** NVTX Range Summary (nvtx_sum): + + Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Style Range + -------- --------------- --------- ----------- ----------- --------- ---------- ----------- ------- ------------------------- + 71.3 91,261,248 2,048 44,561.2 34,700.0 33,179 17,628,931 388,774.9 PushPop cuBLAS:cublasSgemm_v2 + 21.8 27,939,877 225 124,177.2 53,143.0 27,935 15,965,566 1,060,852.9 PushPop cuBLAS:cublasGemmEx + 6.3 8,036,669 1 8,036,669.0 8,036,669.0 8,036,669 8,036,669 0.0 PushPop cuBLAS:cublasCreate_v2 + 0.6 742,488 2,273 326.7 221.0 150 18,693 509.1 PushPop cuBLAS:cublasSetStream_v2 + 0.0 7,419 2 3,709.5 3,709.5 142 7,277 5,045.2 PushPop cuBLAS:cublasGetProperty + 0.0 207 1 207.0 207.0 207 207 0.0 PushPop cuBLAS:cublasSetMathMode + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/osrt_sum.py]... + + ,** OS Runtime Summary (osrt_sum): + + Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name + -------- --------------- --------- ---------------- ---------------- -------------- -------------- ------------ ---------------------- + 49.8 98,748,705,227 995 99,244,929.9 100,207,029.0 3,076 145,062,709 9,535,006.2 poll + 38.9 77,113,391,701 1 77,113,391,701.0 77,113,391,701.0 77,113,391,701 77,113,391,701 0.0 pthread_cond_wait + 10.8 21,505,984,622 43 500,139,177.3 500,139,962.0 500,071,147 500,199,879 31,487.9 pthread_cond_timedwait + 0.2 408,111,147 5,966 68,406.2 1,002.5 19 66,331,209 1,803,864.3 fflush + 0.2 371,330,137 585 634,752.4 4,055.0 202 106,687,209 7,290,173.5 ioctl + 0.1 100,181,277 29 3,454,526.8 6,438.0 1,135 93,195,838 17,278,903.4 mmap + 0.0 58,243,121 12 4,853,593.4 8,691.5 2,231 58,158,033 16,786,545.6 munmap + 0.0 2,653,253 4 663,313.3 354,810.5 157 1,943,475 915,833.7 fwrite + 0.0 2,281,929 66,070 34.5 22.0 21 648,878 2,531.0 fread + 0.0 831,597 27 30,799.9 6,749.0 3,478 474,236 89,505.1 mmap64 + 0.0 599,699 9 66,633.2 38,958.0 4,556 206,867 71,500.9 sem_timedwait + 0.0 235,180 37 6,356.2 1,564.0 689 114,711 18,945.1 fopen + 0.0 134,278 466 288.2 217.0 155 10,542 532.5 fputs + 0.0 132,740 3 44,246.7 45,080.0 41,640 46,020 2,305.8 pthread_create + 0.0 88,594 44 2,013.5 1,668.5 861 3,993 920.3 open64 + 0.0 26,380 29 909.7 524.0 385 3,325 826.9 fclose + 0.0 21,411 56 382.3 24.0 22 20,033 2,673.7 fgets + 0.0 16,310 62 263.1 120.0 80 2,821 481.5 fcntl + 0.0 15,596 16 974.8 764.0 145 5,352 1,249.5 read + 0.0 12,287 6 2,047.8 1,692.5 618 4,230 1,338.0 open + 0.0 9,178 11 834.4 570.0 301 1,485 475.1 write + 0.0 7,860 2 3,930.0 3,930.0 2,653 5,207 1,806.0 socket + 0.0 7,589 3 2,529.7 2,328.0 775 4,486 1,863.7 pipe2 + 0.0 6,039 1 6,039.0 6,039.0 6,039 6,039 0.0 connect + 0.0 4,874 2 2,437.0 2,437.0 1,626 3,248 1,146.9 fopen64 + 0.0 1,674 1 1,674.0 1,674.0 1,674 1,674 0.0 pthread_cond_signal + 0.0 1,026 7 146.6 164.0 89 212 53.8 dup + 0.0 871 1 871.0 871.0 871 871 0.0 bind + 0.0 415 1 415.0 415.0 415 415 0.0 listen + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/cuda_api_sum.py]... + + ,** CUDA API Summary (cuda_api_sum): + + Time (%) Total Time (ns) Num Calls Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name + -------- --------------- --------- ------------ ----------- --------- ------------- ------------ --------------------------------------------- + 33.3 3,915,363,238 289 13,547,969.7 9,484,112.0 19,820 32,587,408 13,784,976.3 cudaDeviceSynchronize + 33.3 3,915,338,614 289 13,547,884.5 9,484,033.0 19,749 32,587,319 13,784,970.8 cudaDeviceSynchronize + 11.0 1,289,319,560 7,108 181,389.9 4,874.0 1,971 1,248,737,939 14,811,400.1 cudaLaunchKernel + 10.9 1,288,680,251 7,108 181,300.0 4,784.0 1,922 1,248,737,696 14,811,398.3 cudaLaunchKernel + 4.3 504,516,347 3,747 134,645.4 4,250.0 2,925 11,642,362 664,161.4 cudaMemcpyAsync + 4.3 504,111,303 3,747 134,537.3 4,161.0 2,862 11,641,970 664,125.5 cudaMemcpyAsync + 2.0 237,836,979 8 29,729,622.4 1,076.0 972 237,827,936 84,084,416.4 cudaStreamCreateWithFlags + 0.2 24,762,935 4 6,190,733.8 5,975,786.0 463,322 12,348,041 6,245,573.4 cudaMallocHost + 0.2 24,762,567 4 6,190,641.8 5,975,703.0 463,182 12,347,979 6,245,578.8 cudaMallocHost + 0.1 9,415,273 8 1,176,909.1 147,189.5 1,509 4,594,906 1,935,033.5 cudaFreeHost + 0.1 9,410,395 8 1,176,299.4 146,459.0 1,278 4,592,920 1,934,725.0 cudaFreeHost + 0.1 7,195,101 2 3,597,550.5 3,597,550.5 1,072,705 6,122,396 3,570,670.7 cudaFree + 0.1 7,194,827 2 3,597,413.5 3,597,413.5 1,072,563 6,122,264 3,570,677.8 cudaFree + 0.1 7,147,578 1,536 4,653.4 4,177.0 3,552 58,008 2,635.3 cudaMemcpy2DAsync + 0.1 6,938,748 1,536 4,517.4 4,042.0 3,425 57,847 2,634.2 cudaMemcpy2DAsync + 0.0 4,765,427 13,477 353.6 256.0 150 7,184 215.8 cudaStreamGetCaptureInfo_v2_v11030 + 0.0 2,473,305 17 145,488.5 72,327.0 2,246 539,857 166,286.6 cudaMalloc + 0.0 2,470,534 17 145,325.5 72,203.0 2,181 539,649 166,184.6 cudaMalloc + 0.0 2,469,464 2,273 1,086.4 946.0 841 4,801 417.9 cudaEventRecord + 0.0 2,304,122 2,273 1,013.7 873.0 771 4,723 417.2 cudaEventRecord + 0.0 1,179,270 161 7,324.7 7,423.0 5,556 11,078 902.4 cudaMemsetAsync + 0.0 1,157,594 161 7,190.0 7,289.0 5,437 10,922 896.7 cudaMemsetAsync + 0.0 363,729 166 2,191.1 2,186.0 730 6,634 535.8 cudaOccupancyMaxActiveBlocksPerMultiprocessor + 0.0 93,899 766 122.6 102.0 63 553 63.3 cuGetProcAddress_v2 + 0.0 30,972 1 30,972.0 30,972.0 30,972 30,972 0.0 cudaGetDeviceProperties_v2_v12000 + 0.0 9,674 18 537.4 224.0 203 4,209 947.6 cudaEventCreateWithFlags + 0.0 6,163 2 3,081.5 3,081.5 2,878 3,285 287.8 cudaEventQuery + 0.0 5,973 2 2,986.5 2,986.5 2,776 3,197 297.7 cudaEventQuery + 0.0 1,239 3 413.0 152.0 76 1,011 519.3 cuModuleGetLoadingMode + 0.0 1,162 2 581.0 581.0 400 762 256.0 cudaGetDriverEntryPoint_v11030 + 0.0 960 2 480.0 480.0 360 600 169.7 cuInit + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/cuda_gpu_kern_sum.py]... + + ,** CUDA GPU Kernel Summary (cuda_gpu_kern_sum): + + Time (%) Total Time (ns) Instances Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Name + -------- --------------- --------- ------------ ----------- --------- ---------- ------------ ---------------------------------------------------------------------------------------------------- + 94.3 3,661,170,403 224 16,344,510.7 8,861,904.0 2,199,256 30,836,845 12,771,357.3 void dequantize_block<(int)32, (int)2, &dequantize_q4_0, __half>(const void *, T4 *, int) + 2.7 103,018,305 225 457,859.1 346,527.0 333,855 1,230,427 271,927.9 void dequantize_block<(int)1, (int)1, &convert_f32, __half>(const void *, T4 *, int) + 1.1 44,414,363 161 275,865.6 345,439.0 110,432 804,285 138,253.6 ampere_h16816gemm_256x128_ldg8_stages_32x3_tn + 1.1 43,348,510 2,273 19,071.1 6,944.0 6,784 619,070 49,609.4 void dequantize_block<(int)1, (int)1, &convert_f16, float>(const void *, T4 *, int) + 0.4 16,973,438 2,048 8,287.8 8,671.5 7,360 10,304 693.3 void cutlass::Kernel(T1::Params) + 0.1 5,584,460 1 5,584,460.0 5,584,460.0 5,584,460 5,584,460 0.0 void dequantize_block_q6_K<__half>(const void *, T1 *) + 0.1 4,481,001 2,048 2,188.0 2,271.5 1,663 3,360 484.2 void cublasLt::splitKreduce_kernel<(int)32, (int)16, int, float, float, float, float, (bool)1, (boo… + 0.1 1,946,648 64 30,416.4 30,176.0 29,664 34,720 977.1 ampere_h16816gemm_128x128_ldg8_stages_64x3_tn + 0.0 340,796 64 5,324.9 5,312.0 5,184 6,048 162.5 void cublasLt::splitKreduce_kernel<(int)32, (int)16, int, __half, __half, __half, __half, (bool)1, … + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/cuda_gpu_mem_time_sum.py]... + + ,** CUDA GPU MemOps Summary (by Time) (cuda_gpu_mem_time_sum): + + Time (%) Total Time (ns) Count Avg (ns) Med (ns) Min (ns) Max (ns) StdDev (ns) Operation + -------- --------------- ----- --------- -------- -------- ---------- ----------- ------------------ + 82.7 538,012,483 3,010 178,741.7 13,488.0 5,120 11,313,305 646,615.9 [CUDA memcpy HtoD] + 17.2 112,106,788 2,273 49,321.1 22,495.0 7,999 1,823,129 143,689.5 [CUDA memcpy DtoH] + 0.0 66,112 161 410.6 384.0 352 1,152 82.8 [CUDA memset] + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/cuda_gpu_mem_size_sum.py]... + + ,** CUDA GPU MemOps Summary (by Size) (cuda_gpu_mem_size_sum): + + Total (MB) Count Avg (MB) Med (MB) Min (MB) Max (MB) StdDev (MB) Operation + ---------- ----- -------- -------- -------- -------- ----------- ------------------ + 6,729.069 3,010 2.236 0.192 0.096 107.520 6.567 [CUDA memcpy HtoD] + 2,884.992 2,273 1.269 0.562 0.192 48.000 3.775 [CUDA memcpy DtoH] + 0.063 161 0.000 0.000 0.000 0.002 0.000 [CUDA memset] + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/openmp_sum.py]... +SKIPPED: report7.sqlite does not contain OpenMP event data. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/opengl_khr_range_sum.py]... +SKIPPED: report7.sqlite does not contain KHR Extension (KHR_DEBUG) data. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/opengl_khr_gpu_range_sum.py]... +SKIPPED: report7.sqlite does not contain GPU KHR Extension (KHR_DEBUG) data. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/vulkan_marker_sum.py]... +SKIPPED: report7.sqlite does not contain Vulkan Debug Extension (Vulkan Debug Util) data. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/vulkan_gpu_marker_sum.py]... +SKIPPED: report7.sqlite does not contain GPU Vulkan Debug Extension (GPU Vulkan Debug markers) data. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/dx11_pix_sum.py]... +SKIPPED: report7.sqlite does not contain DX11 CPU debug markers. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/dx12_gpu_marker_sum.py]... +SKIPPED: report7.sqlite does not contain DX12 GPU debug markers. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/dx12_pix_sum.py]... +SKIPPED: report7.sqlite does not contain DX12 CPU debug markers. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/wddm_queue_sum.py]... +SKIPPED: report7.sqlite does not contain WDDM context data. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/um_sum.py]... +SKIPPED: report7.sqlite does not contain CUDA Unified Memory CPU page faults data. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/um_total_sum.py]... +SKIPPED: report7.sqlite does not contain CUDA Unified Memory CPU page faults data. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/um_cpu_page_faults_sum.py]... +SKIPPED: report7.sqlite does not contain CUDA Unified Memory CPU page faults data. + +Processing [report7.sqlite] with [/opt/nvidia/nsight-systems/2023.2.3/host-linux-x64/reports/openacc_sum.py]... +SKIPPED: report7.sqlite does not contain OpenACC event data. + +#+end_example + +#+begin_src sh + /opt/nvidia/nsight-systems/2023.2.3/bin/nsys export -t json report7.nsys-rep +#+end_src + +#+RESULTS: + +#+begin_src sh + /opt/nvidia/nsight-systems/2023.2.3/bin/nsys export -t hdf report7.nsys-rep + /opt/nvidia/nsight-systems/2023.2.3/bin/nsys export -t json report7.nsys-rep + # jq . ./report12.json > report12.jq +#+end_src + +#+RESULTS: + + +#+begin_src sh :results verbatim :exports both +python ./reporthd5_callchains.py ./report7.h5 +#+end_src + +#+RESULTS: +#+begin_example +./report2.h5 +./report2.h5 +('0x7f70ac50663f|721|MOD:321/opt/nvidia/nsight-systems/2023.2.3/target-linux-x64/libcupti.so.12.2|DEP:0', 17) +('0x7f70ac508958|717|MOD:321/opt/nvidia/nsight-systems/2023.2.3/target-linux-x64/libcupti.so.12.2|DEP:1', 17) +('0x7f70af680966|722|MOD:235/usr/lib/x86_64-linux-gnu/libcuda.so.545.23.06|DEP:2', 17) +('cudaFreeHost|636|MOD:206/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.52|DEP:3', 8) +('ggml_cuda_host_free|637|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 8) +('llama_new_context_with_model|647|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 6) +('llama_init_from_gpt_params(gpt_params&)|521|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 6) +('main|155|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 6) +('__libc_start_call_main|318|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:8', 6) +('__libc_start_main@@GLIBC_2|319|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:9', 6) +('_start|320|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:10', 6) +('cudaMallocHost|778|MOD:206/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.52|DEP:3', 4) +('ggml_cuda_host_malloc|779|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 4) +('main|155|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 4) +('__libc_start_call_main|318|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:7', 4) +('__libc_start_main@@GLIBC_2|319|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:8', 4) +('_start|320|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 4) +('main|155|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 3) +('__libc_start_call_main|318|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:9', 3) +('__libc_start_main@@GLIBC_2|319|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:10', 3) +('_start|320|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:11', 3) +('0x7f70d54421b0|728|MOD:208/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:3', 3) +('0x7f70d50aa9bd|729|MOD:208/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:4', 3) +('llama_free|848|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 3) +('cublasCreate_v2|499|MOD:208/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:6', 2) +('ggml_init_cublas|422|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 2) +('ggml_init|316|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 2) +('llama_backend_init|317|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 2) +('main|155|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:10', 2) +('__libc_start_call_main|318|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:11', 2) +('__libc_start_main@@GLIBC_2|319|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:12', 2) +('_start|320|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:13', 2) +('llm_load_tensors(llama_model_loader&, llama_model&, int, int, float const*, bool, void (*)(float, votrunc|638|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 2) +('llama_load_model_from_file|520|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 2) +('llama_init_from_gpt_params(gpt_params&)|521|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 2) +('0x7f70d5442978|723|MOD:208/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:3', 1) +('cublasCreate_v2|499|MOD:208/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:4', 1) +('ggml_init_cublas|422|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 1) +('ggml_init|316|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 1) +('llama_backend_init|317|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 1) +('0x7f70b46e9dc8|724|MOD:215/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:3', 1) +('0x7f70b16d9e24|725|MOD:215/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:4', 1) +('0x7f70b16da79b|726|MOD:215/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:5', 1) +('cublasLtCtxInit|510|MOD:215/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:6', 1) +('cublasCreate_v2|499|MOD:208/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:7', 1) +('ggml_init_cublas|422|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 1) +('ggml_init|316|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 1) +('llama_backend_init|317|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:10', 1) +('main|155|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:11', 1) +('__libc_start_call_main|318|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:12', 1) +('__libc_start_main@@GLIBC_2|319|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:13', 1) +('_start|320|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:14', 1) +('0x7f70d50aa20b|730|MOD:208/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:5', 1) +('0x7f70d50aa22e|731|MOD:208/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:5', 1) +('cublasCreate_v2|499|MOD:208/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:5', 1) +('ggml_init_cublas|422|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 1) +('ggml_init|316|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 1) +('llama_backend_init|317|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 1) +('main|155|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 1) +('__libc_start_call_main|318|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:10', 1) +('__libc_start_main@@GLIBC_2|319|MOD:169/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:11', 1) +('_start|320|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:12', 1) +('llama_free_model|805|MOD:192/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 1) +#+end_example + +* mistral eval + +This is a table of performance metrics for code that performs several operations on a GPU using NVIDIA CUDA. The operations are: + +* `cudaDeviceSynchronize`: This operation synchronizes the execution of all other threads on the GPU. It ensures that all threads have completed before moving on to the next operation. +* `cudaLaunchKernel`: This operation launches a kernel function (a small CUDA program) on the GPU. In this case, two different kernels are launched, likely with different parameters or data inputs. +* `cudaMemcpyAsync`: This operation copies memory from the CPU to the GPU or vice versa asynchronously. It does not block the execution of other threads on the GPU, allowing multiple operations to be performed concurrently. +* `cudaStreamCreateWithFlags`: This operation creates a new CUDA stream, which is used to manage the execution of multiple operations on the GPU in parallel. In this case, a single stream is created with some flags set. + + +#+begin_src sh :results verbatim :exports both +python ./reporthd5_callchains.py ./report7.h5 +#+end_src + +#+RESULTS: +#+begin_example +./report7.h5 +./report7.h5 +('0x7fbb4530663f|697|MOD:296/opt/nvidia/nsight-systems/2023.2.3/target-linux-x64/libcupti.so.12.2|DEP:0', 15147) +('0x7fbb45308958|693|MOD:296/opt/nvidia/nsight-systems/2023.2.3/target-linux-x64/libcupti.so.12.2|DEP:1', 15147) +('0x7fbb48480966|698|MOD:231/usr/lib/x86_64-linux-gnu/libcuda.so.545.23.06|DEP:2', 15147) +('0x7fbb4d5057a8|3059|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:3', 4385) +('ggml_cuda_op_mul_mat(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, void (*)(ggml_tensor construnc|725|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 4036) +('ggml_cuda_compute_forward|726|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 4036) +('ggml_graph_compute_thread|637|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 4036) +('start_thread|350|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:7', 4032) +('__GI___clone3|351|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:8', 4032) +('cudaMemcpyAsync|724|MOD:207/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.52|DEP:3', 3747) +('ggml_cuda_op_mul_mat_cublas(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, char const*, floattrunc|746|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 2731) +('ggml_cuda_op_mul_mat(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, void (*)(ggml_tensor construnc|725|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 2731) +('ggml_cuda_compute_forward|726|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 2731) +('ggml_graph_compute_thread|637|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 2731) +('start_thread|350|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:9', 2725) +('__GI___clone3|351|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:10', 2725) +('cudaLaunchKernel|744|MOD:207/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.52|DEP:3', 2723) +('0x7fbb6e25d785|3070|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:3', 2273) +('0x7fbb6deab1d7|3071|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:4', 2273) +('0x7fbb6deac192|3072|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:5', 2273) +('ggml_cuda_op_mul_mat_cublas(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, char const*, floattrunc|746|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:13', 2273) +('ggml_cuda_op_mul_mat(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, void (*)(ggml_tensor construnc|725|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:14', 2273) +('ggml_cuda_compute_forward|726|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:15', 2273) +('ggml_graph_compute_thread|637|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:16', 2273) +('void dequantize_block<1, 1, &(convert_f16(void const*, int, int, __half2&)), float>(void const*, flotrunc|2841|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 2273) +('start_thread|350|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:17', 2272) +('__GI___clone3|351|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:18', 2272) +('ggml_cuda_op_mul_mat_cublas(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, char const*, floattrunc|746|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:14', 2211) +('ggml_cuda_op_mul_mat(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, void (*)(ggml_tensor construnc|725|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:15', 2211) +('ggml_cuda_compute_forward|726|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:16', 2211) +('ggml_graph_compute_thread|637|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:17', 2211) +('start_thread|350|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:18', 2210) +('__GI___clone3|351|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:19', 2210) +('0x7fbb6deaa8b2|3073|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:6', 2112) +('0x7fbb4c77794d|3084|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:4', 2048) +('0x7fbb4c7db69a|3085|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:5', 2048) +('0x7fbb4afd0fc9|3086|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:6', 2048) +('0x7fbb4a4f5b71|3087|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:7', 2048) +('0x7fbb4a62697b|3088|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:8', 2048) +('cublasLtSSSMatmul|2823|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:9', 2048) +('0x7fbb6de4cb15|3089|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:10', 2048) +('0x7fbb6de4ef46|3090|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:11', 2048) +('0x7fbb6df65abd|3091|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:12', 2048) +('cublasSgemm_v2|2827|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:13', 2048) +('0x7fbb4ad4b256|3092|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:4', 2048) +('0x7fbb4afd1133|3093|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:5', 2048) +('0x7fbb4a4f5b71|3087|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:6', 2048) +('0x7fbb4a62697b|3088|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:7', 2048) +('cublasLtSSSMatmul|2823|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:8', 2048) +('0x7fbb6de4cb15|3089|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:9', 2048) +('0x7fbb6de4ef46|3090|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:10', 2048) +('0x7fbb6df65abd|3091|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:11', 2048) +('cublasSgemm_v2|2827|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:12', 2048) +('0x7fbb6de4cb48|3094|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:7', 2048) +('0x7fbb6de4ef46|3090|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:8', 2048) +('0x7fbb6df65abd|3091|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:9', 2048) +('cublasSgemm_v2|2827|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:10', 2048) +('ggml_cuda_op_mul_mat_cublas(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, char const*, floattrunc|746|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:11', 2048) +('ggml_cuda_op_mul_mat(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, void (*)(ggml_tensor construnc|725|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:12', 2048) +('ggml_cuda_compute_forward|726|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:13', 2048) +('ggml_graph_compute_thread|637|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:14', 2048) +('start_thread|350|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:15', 2048) +('__GI___clone3|351|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:16', 2048) +('ggml_cuda_op_mul_mat(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, void (*)(ggml_tensor construnc|725|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 1542) +('ggml_cuda_compute_forward|726|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 1542) +('ggml_graph_compute_thread|637|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 1542) +('start_thread|350|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:8', 1539) +('__GI___clone3|351|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:9', 1539) +('cudaMemcpy2DAsync|2915|MOD:207/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.52|DEP:3', 1536) +('ggml_cuda_cpy_tensor_2d(void*, ggml_tensor const*, long, long, long, long, CUstream_st*)|2916|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 1536) +('cudaDeviceSynchronize|2772|MOD:207/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.52|DEP:3', 289) +('void dequantize_block<1, 1, &(convert_f32(void const*, int, int, __half2&)), __half>(void const*, __trunc|3047|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 225) +('0x7fbb4acae2f1|3062|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:6', 225) +('0x7fbb4acb0dda|3063|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:7', 225) +('0x7fbb4a4f3471|3064|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:8', 225) +('0x7fbb4a62af2f|3065|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:9', 225) +('cublasLtHHHMatmul|2759|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:10', 225) +('0x7fbb6de43905|3066|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:11', 225) +('0x7fbb6de45d36|3055|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:12', 225) +('0x7fbb6de2dfbe|3056|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:13', 225) +('0x7fbb6e0c5ef4|3057|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:14', 225) +('0x7fbb6e0c6380|3058|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:15', 225) +('cublasGemmEx|3039|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:16', 225) +('ggml_cuda_op_mul_mat_cublas(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, char const*, floattrunc|746|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:17', 225) +('ggml_cuda_op_mul_mat(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, void (*)(ggml_tensor construnc|725|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:18', 225) +('ggml_cuda_compute_forward|726|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:19', 225) +('ggml_graph_compute_thread|637|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:20', 225) +('0x7fbb6de43938|3074|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:7', 225) +('0x7fbb6de45d36|3055|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:8', 225) +('0x7fbb6de2dfbe|3056|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:9', 225) +('0x7fbb6e0c5ef4|3057|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:10', 225) +('0x7fbb6e0c6380|3058|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:11', 225) +('cublasGemmEx|3039|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:12', 225) +('void dequantize_block<32, 2, &(dequantize_q4_0(void const*, int, int, __half2&)), __half>(void consttrunc|745|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 224) +('start_thread|350|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:21', 224) +('__GI___clone3|351|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:22', 224) +('0x7fbb6de45d36|3055|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:9', 163) +('0x7fbb6de2dfbe|3056|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:10', 163) +('0x7fbb6e0c5ef4|3057|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:11', 163) +('0x7fbb6e0c6380|3058|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:12', 163) +('cublasGemmEx|3039|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:13', 163) +('0x7fbb4d503e43|3078|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:3', 161) +('0x7fbb4acb13e3|3079|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:4', 161) +('0x7fbb4a4f3471|3064|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:5', 161) +('0x7fbb4a62af2f|3065|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:6', 161) +('cublasLtHHHMatmul|2759|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:7', 161) +('0x7fbb6de43905|3066|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:8', 161) +5('0x7fbb4d4468ad|3081|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:4', 161) +('0x7fbb4d4468cd|3082|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:5', 161) +('0x7fbb6deaa85f|3083|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:6', 161) +('0x7fbb4d44430d|3060|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:4', 64) +('0x7fbb4d44432d|3061|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:5', 64) +('0x7fbb4ad41fd2|3067|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:4', 64) +('0x7fbb4acb0e84|3068|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:5', 64) +('0x7fbb4a4f3471|3064|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:6', 64) +('0x7fbb4a62af2f|3065|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:7', 64) +('cublasLtHHHMatmul|2759|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:8', 64) +('0x7fbb6de43905|3066|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:9', 64) +('0x7fbb6de45d36|3055|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:10', 64) +('0x7fbb6de2dfbe|3056|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:11', 64) +('0x7fbb6e0c5ef4|3057|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:12', 64) +('0x7fbb6e0c6380|3058|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:13', 64) +('cublasGemmEx|3039|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:14', 64) +('ggml_cuda_op_mul_mat_cublas(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, char const*, floattrunc|746|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:15', 64) +('ggml_cuda_op_mul_mat(ggml_tensor const*, ggml_tensor const*, ggml_tensor*, void (*)(ggml_tensor construnc|725|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:16', 64) +('ggml_cuda_compute_forward|726|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:17', 64) +('ggml_graph_compute_thread|637|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:18', 64) +('start_thread|350|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:19', 63) +('__GI___clone3|351|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:20', 63) +('cudaMalloc|703|MOD:207/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.52|DEP:3', 14) +('ggml_cuda_pool_malloc(unsigned long, unsigned long*)|2855|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 14) +('cudaFreeHost|613|MOD:207/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.52|DEP:3', 8) +('ggml_cuda_host_free|614|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 8) +('llama_new_context_with_model|628|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 6) +('llama_init_from_gpt_params(gpt_params&)|523|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 6) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 6) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:8', 6) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:9', 6) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:10', 6) +('ggml_graph_compute|639|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 6) +('ggml_graph_compute_helper(std::vector >&, ggml_cgraph*,trunc|640|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:10', 6) +('llama_decode_internal(llama_context&, llama_batch)|633|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:11', 6) +('llama_decode|634|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:12', 6) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:13', 6) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:14', 6) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:15', 6) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:16', 6) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:11', 5) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:12', 5) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:13', 5) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:14', 5) +('cudaMallocHost|3009|MOD:207/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcudart.so.12.3.52|DEP:3', 4) +('ggml_cuda_host_malloc|3010|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 4) +('ggml_graph_compute|639|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 4) +('ggml_graph_compute_helper(std::vector >&, ggml_cgraph*,trunc|640|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 4) +('llama_decode_internal(llama_context&, llama_batch)|633|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 4) +('llama_decode|634|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:10', 4) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 4) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:7', 4) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:8', 4) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 4) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 3) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:9', 3) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:10', 3) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:11', 3) +('0x7fbb6e2421b0|704|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:3', 3) +('0x7fbb6deaa9bd|705|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:4', 3) +('ggml_graph_compute|639|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 3) +('ggml_graph_compute_helper(std::vector >&, ggml_cgraph*,trunc|640|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 3) +('llama_decode_internal(llama_context&, llama_batch)|633|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:10', 3) +('llama_decode|634|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:11', 3) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:12', 3) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:13', 3) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:14', 3) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:15', 3) +('llama_free|3928|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 3) +('cublasCreate_v2|442|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:6', 2) +('ggml_init_cublas|443|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 2) +('ggml_init|291|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 2) +('llama_backend_init|292|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 2) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:10', 2) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:11', 2) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:12', 2) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:13', 2) +('llm_load_tensors(llama_model_loader&, llama_model&, int, int, float const*, bool, void (*)(float, votrunc|615|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 2) +('llama_load_model_from_file|521|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 2) +('llama_init_from_gpt_params(gpt_params&)|523|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 2) +('0x7fbb6e23e8db|3049|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:3', 2) +('0x7fbb6deaae8b|3050|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:4', 2) +('0x7fbb6deac55b|3051|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:5', 2) +('0x7fbb6de43264|3053|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:7', 2) +('0x7fbb6de43c6c|3054|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:8', 2) +('0x7fbb6e242978|699|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:3', 1) +('cublasCreate_v2|442|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:4', 1) +('ggml_init_cublas|443|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 1) +('ggml_init|291|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 1) +('llama_backend_init|292|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 1) +('0x7fbb4d4e9dc8|700|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:3', 1) +('0x7fbb4a4d9e24|701|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:4', 1) +('0x7fbb4a4da79b|702|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:5', 1) +('cublasLtCtxInit|456|MOD:216/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublasLt.so.12.3.2.9|DEP:6', 1) +('cublasCreate_v2|442|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:7', 1) +('ggml_init_cublas|443|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 1) +('ggml_init|291|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 1) +('llama_backend_init|292|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:10', 1) +('0x7fbb6deaa20b|706|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:5', 1) +('0x7fbb6deaa22e|707|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:5', 1) +('cublasCreate_v2|442|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:5', 1) +('ggml_init_cublas|443|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:6', 1) +('ggml_init|291|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:7', 1) +('llama_backend_init|292|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:8', 1) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:9', 1) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:10', 1) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:11', 1) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:12', 1) +('0x7fbb6deaa5dc|3052|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:6', 1) +('ggml_graph_compute|639|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:18', 1) +('ggml_graph_compute_helper(std::vector >&, ggml_cgraph*,trunc|640|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:19', 1) +('llama_decode_internal(llama_context&, llama_batch)|633|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:20', 1) +('llama_decode|634|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:21', 1) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:22', 1) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:23', 1) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:24', 1) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:25', 1) +('ggml_graph_compute|639|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:21', 1) +('ggml_graph_compute_helper(std::vector >&, ggml_cgraph*,trunc|640|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:22', 1) +('llama_decode_internal(llama_context&, llama_batch)|633|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:23', 1) +('llama_decode|634|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:24', 1) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:25', 1) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:26', 1) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:27', 1) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:28', 1) +('ggml_graph_compute|639|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:19', 1) +('ggml_graph_compute_helper(std::vector >&, ggml_cgraph*,trunc|640|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:20', 1) +('llama_decode_internal(llama_context&, llama_batch)|633|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:21', 1) +('llama_decode|634|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:22', 1) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:23', 1) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:24', 1) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:25', 1) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:26', 1) +('ggml_graph_compute|639|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:17', 1) +('ggml_graph_compute_helper(std::vector >&, ggml_cgraph*,trunc|640|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:18', 1) +('llama_decode_internal(llama_context&, llama_batch)|633|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:19', 1) +('llama_decode|634|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:20', 1) +('main|158|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:21', 1) +('__libc_start_call_main|293|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:22', 1) +('__libc_start_main@@GLIBC_2|294|MOD:170/usr/lib/x86_64-linux-gnu/libc.so.6|DEP:23', 1) +('_start|295|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:24', 1) +('0x7fbb6deaa582|3076|MOD:209/usr/local/cuda-12.3/targets/x86_64-linux/lib/libcublas.so.12.3.2.9|DEP:6', 1) +('void dequantize_block_q6_K<__half>(void const*, __half*)|3698|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:4', 1) +('llama_free_model|3899|MOD:193/mnt/data1/2023/11/09/llama.cpp/build/bin/main|DEP:5', 1) +#+end_example + + +nm /mnt/data1/2023/11/09/llama.cpp/build/bin/main >main.nm + + +grep libcuda report7.gron -C10 > cudareport.txt +grep -C1000 libcuda report7.jq > cuda.txt diff --git a/examples/main/main.cpp b/examples/main/main.cpp index 31ec8cade19be..de24283ab8020 100644 --- a/examples/main/main.cpp +++ b/examples/main/main.cpp @@ -659,7 +659,7 @@ int main(int argc, char ** argv) { if (input_echo) { for (auto id : embd) { const std::string token_str = llama_token_to_piece(ctx, id); - printf("%s", token_str.c_str()); + printf("TOKEN:%s\n", token_str.c_str()); if (embd.size() > 1) { input_tokens.push_back(id); @@ -850,6 +850,9 @@ int main(int argc, char ** argv) { llama_print_timings(ctx); write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens); + // dont dump core + //int *ptr = 0; *ptr = 1; + if (ctx_guidance) { llama_free(ctx_guidance); } llama_free(ctx); llama_free_model(model); diff --git a/ggml-alloc.c b/ggml-alloc.cpp similarity index 100% rename from ggml-alloc.c rename to ggml-alloc.cpp diff --git a/ggml-backend.c b/ggml-backend.cpp similarity index 100% rename from ggml-backend.c rename to ggml-backend.cpp diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 50e03de500747..b6d39cc29f4db 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -7623,12 +7623,12 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1 #endif // debug helpers - //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); - //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); - //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]); - //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]); - //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); - //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); + // printf("JSON: { \"data\":{ \"src0\": { \"%s\" :{ \"ne\" : [ %8d, %8d, %8d, %8d ], \"nb\" : [ %8d, %8d, %8d, %8d ], \"contiguous\":\"%d\", \"transposed\":\"%d\", \"type\": \"%s\", \"name\" : \"%s\"}}, \"src1\": { \"%s\" :{ \"ne\" : [ %8d, %8d, %8d, %8d ], \"nb\" : [ %8d, %8d, %8d, %8d ], \"contiguous\":\"%d\", \"transposed\":\"%d\", \"type\": \"%s\", \"name\" : \"%s\"}}, \"dst\" : { \"%s\" :{ \"ne\" : [ %8d, %8d, %8d, %8d ], \"nb\" : [ %8d, %8d, %8d, %8d ], \"contiguous\":\"%d\", \"transposed\":\"%d\", \"type\": \"%s\", \"name\" : \"%s\"}}}}\n", + // src0->name, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3], + // ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name, + // src1->name, src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3], ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name, + // dst->name, dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], ggml_is_contiguous(dst), ggml_is_transposed(dst), ggml_type_name(dst->type), dst->name + // ); if (!split && all_on_device && !use_tensor_cores && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { // KQ single-batch @@ -8056,9 +8056,9 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_ if (tensor->op == GGML_OP_MUL_MAT) { if (tensor->src[0]->ne[3] != tensor->src[1]->ne[3]) { -#ifndef NDEBUG + fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %d, src1->ne[3] = %d - fallback to CPU\n", __func__, tensor->name, tensor->src[0]->ne[3], tensor->src[1]->ne[3]); -#endif + return false; } } diff --git a/ggml-impl.h b/ggml-impl.h index 06c07339e9269..1bf20a4af3985 100644 --- a/ggml-impl.h +++ b/ggml-impl.h @@ -22,7 +22,7 @@ extern "C" { #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L) #define static_assert(cond, msg) _Static_assert(cond, msg) #else -#define static_assert(cond, msg) struct global_scope_noop_trick + //#define static_assert(cond, msg) struct global_scope_noop_trick #endif #endif diff --git a/ggml-mpi.c b/ggml-mpi.cpp similarity index 100% rename from ggml-mpi.c rename to ggml-mpi.cpp diff --git a/ggml-quants.c b/ggml-quants.cpp similarity index 93% rename from ggml-quants.c rename to ggml-quants.cpp index 7285d5f7fbcc0..094fb8ccb6c9c 100644 --- a/ggml-quants.c +++ b/ggml-quants.cpp @@ -5,7 +5,7 @@ #include #include #include - +#include #ifdef __ARM_NEON // if YCM cannot find , make a symbolic link to it, for example: @@ -425,7 +425,7 @@ static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4 #endif // reference implementation for deterministic creation of model files -void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) { +void quantize_row_q4_0_reference(const float * __restrict__ x, block_q4_0 * __restrict__ y, int k) { static const int qk = QK4_0; assert(k % qk == 0); @@ -462,11 +462,11 @@ void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict } } -void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) { +void quantize_row_q4_0(const float * __restrict__ x, void * __restrict__ y, int k) { quantize_row_q4_0_reference(x, y, k); } -void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) { +void quantize_row_q4_1_reference(const float * __restrict__ x, block_q4_1 * __restrict__ y, int k) { const int qk = QK4_1; assert(k % qk == 0); @@ -503,11 +503,11 @@ void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict } } -void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) { +void quantize_row_q4_1(const float * __restrict__ x, void * __restrict__ y, int k) { quantize_row_q4_1_reference(x, y, k); } -void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) { +void quantize_row_q5_0_reference(const float * __restrict__ x, block_q5_0 * __restrict__ y, int k) { static const int qk = QK5_0; assert(k % qk == 0); @@ -551,11 +551,11 @@ void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict } } -void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) { +void quantize_row_q5_0(const float * __restrict__ x, void * __restrict__ y, int k) { quantize_row_q5_0_reference(x, y, k); } -void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) { +void quantize_row_q5_1_reference(const float * __restrict__ x, block_q5_1 * __restrict__ y, int k) { const int qk = QK5_1; assert(k % qk == 0); @@ -599,12 +599,12 @@ void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict } } -void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) { +void quantize_row_q5_1(const float * __restrict__ x, void * __restrict__ y, int k) { quantize_row_q5_1_reference(x, y, k); } // reference implementation for deterministic creation of model files -void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) { +void quantize_row_q8_0_reference(const float * __restrict__ x, block_q8_0 * __restrict__ y, int k) { assert(k % QK8_0 == 0); const int nb = k / QK8_0; @@ -629,12 +629,12 @@ void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict } } -void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) { +void quantize_row_q8_0(const float * __restrict__ x, void * __restrict__ vy, int k) { assert(QK8_0 == 32); assert(k % QK8_0 == 0); const int nb = k / QK8_0; - block_q8_0 * restrict y = vy; + block_q8_0 * __restrict__ y = vy; #if defined(__ARM_NEON) for (int i = 0; i < nb; i++) { @@ -818,7 +818,7 @@ void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) { } // reference implementation for deterministic creation of model files -void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) { +void quantize_row_q8_1_reference(const float * __restrict__ x, block_q8_1 * __restrict__ y, int k) { assert(QK8_1 == 32); assert(k % QK8_1 == 0); const int nb = k / QK8_1; @@ -853,11 +853,11 @@ void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict } } -void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) { +void quantize_row_q8_1(const float * __restrict__ x, void * __restrict__ vy, int k) { assert(k % QK8_1 == 0); const int nb = k / QK8_1; - block_q8_1 * restrict y = vy; + block_q8_1 * __restrict__ y = vy; #if defined(__ARM_NEON) for (int i = 0; i < nb; i++) { @@ -1071,7 +1071,7 @@ void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) { #endif } -void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) { +void dequantize_row_q4_0(const block_q4_0 * __restrict__ x, float * __restrict__ y, int k) { static const int qk = QK4_0; assert(k % qk == 0); @@ -1091,7 +1091,7 @@ void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int } } -void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) { +void dequantize_row_q4_1(const block_q4_1 * __restrict__ x, float * __restrict__ y, int k) { static const int qk = QK4_1; assert(k % qk == 0); @@ -1112,7 +1112,7 @@ void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int } } -void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) { +void dequantize_row_q5_0(const block_q5_0 * __restrict__ x, float * __restrict__ y, int k) { static const int qk = QK5_0; assert(k % qk == 0); @@ -1138,7 +1138,7 @@ void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int } } -void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) { +void dequantize_row_q5_1(const block_q5_1 * __restrict__ x, float * __restrict__ y, int k) { static const int qk = QK5_1; assert(k % qk == 0); @@ -1165,7 +1165,7 @@ void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int } } -void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k) { +void dequantize_row_q8_0(const block_q8_0 * __restrict__ x, float * __restrict__ y, int k) { static const int qk = QK8_0; assert(k % qk == 0); @@ -1195,7 +1195,7 @@ static inline int nearest_int(float fval) { return (i & 0x007fffff) - 0x00400000; } -static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type) { +static float make_qx_quants(int n, int nmax, const float * __restrict__ x, int8_t * __restrict__ L, int rmse_type) { float max = 0; float amax = 0; for (int i = 0; i < n; ++i) { @@ -1259,7 +1259,7 @@ static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * return scale; } -static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) { +static float make_q3_quants(int n, int nmax, const float * __restrict__ x, int8_t * __restrict__ L, bool do_rmse) { float max = 0; float amax = 0; for (int i = 0; i < n; ++i) { @@ -1318,7 +1318,7 @@ static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * return 1/iscale; } -static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, +static float make_qkx1_quants(int n, int nmax, const float * __restrict__ x, uint8_t * __restrict__ L, float * __restrict__ the_min, int ntry, float alpha) { float min = x[0]; float max = x[0]; @@ -1361,8 +1361,8 @@ static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t return scale; } -static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights, - uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux, +static float make_qkx2_quants(int n, int nmax, const float * __restrict__ x, const float * __restrict__ weights, + uint8_t * __restrict__ L, float * __restrict__ the_min, uint8_t * __restrict__ Laux, float rmin, float rdelta, int nstep, bool use_mad) { float min = x[0]; float max = x[0]; @@ -1443,7 +1443,7 @@ static float make_qkx2_quants(int n, int nmax, const float * restrict x, const f } #if QK_K == 256 -static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) { +static inline void get_scale_min_k4(int j, const uint8_t * __restrict__ q, uint8_t * __restrict__ d, uint8_t * __restrict__ m) { if (j < 4) { *d = q[j] & 63; *m = q[j + 4] & 63; } else { @@ -1455,7 +1455,7 @@ static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * //========================- 2-bit (de)-quantization -void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k) { +void quantize_row_q2_K_reference(const float * __restrict__ x, block_q2_K * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -1532,7 +1532,7 @@ void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict } } -void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k) { +void dequantize_row_q2_K(const block_q2_K * __restrict__ x, float * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -1578,15 +1578,15 @@ void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int } } -void quantize_row_q2_K(const float * restrict x, void * restrict vy, int k) { +void quantize_row_q2_K(const float * __restrict__ x, void * __restrict__ vy, int k) { quantize_row_q2_K_reference(x, vy, k); } -size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { +size_t ggml_quantize_q2_K(const float * __restrict__ src, void * __restrict__ dst, int n, int k, int64_t * __restrict__ hist) { (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { - block_q2_K * restrict y = (block_q2_K *)dst + j/QK_K; + block_q2_K * __restrict__ y = (block_q2_K *)dst + j/QK_K; quantize_row_q2_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q2_K)); @@ -1594,7 +1594,7 @@ size_t ggml_quantize_q2_K(const float * restrict src, void * restrict dst, int n //========================= 3-bit (de)-quantization -void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k) { +void quantize_row_q3_K_reference(const float * __restrict__ x, block_q3_K * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -1708,7 +1708,7 @@ void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict } #if QK_K == 256 -void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) { +void dequantize_row_q3_K(const block_q3_K * __restrict__ x, float * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -1722,8 +1722,8 @@ void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int const float d_all = GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q = x[i].qs; - const uint8_t * restrict hm = x[i].hmask; + const uint8_t * __restrict__ q = x[i].qs; + const uint8_t * __restrict__ hm = x[i].hmask; uint8_t m = 1; memcpy(aux, x[i].scales, 12); @@ -1758,7 +1758,7 @@ void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int } } #else -void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k) { +void dequantize_row_q3_K(const block_q3_K * __restrict__ x, float * __restrict__ y, int k) { assert(k % QK_K == 0); assert(QK_K == 64); const int nb = k / QK_K; @@ -1767,8 +1767,8 @@ void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int const float d_all = GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q = x[i].qs; - const uint8_t * restrict hm = x[i].hmask; + const uint8_t * __restrict__ q = x[i].qs; + const uint8_t * __restrict__ hm = x[i].hmask; const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); @@ -1791,15 +1791,15 @@ void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int } #endif -void quantize_row_q3_K(const float * restrict x, void * restrict vy, int k) { +void quantize_row_q3_K(const float * __restrict__ x, void * __restrict__ vy, int k) { quantize_row_q3_K_reference(x, vy, k); } -size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { +size_t ggml_quantize_q3_K(const float * __restrict__ src, void * __restrict__ dst, int n, int k, int64_t * __restrict__ hist) { (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { - block_q3_K * restrict y = (block_q3_K *)dst + j/QK_K; + block_q3_K * __restrict__ y = (block_q3_K *)dst + j/QK_K; quantize_row_q3_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q3_K)); @@ -1807,7 +1807,7 @@ size_t ggml_quantize_q3_K(const float * restrict src, void * restrict dst, int n // ====================== 4-bit (de)-quantization -void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k) { +void quantize_row_q4_K_reference(const float * __restrict__ x, block_q4_K * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -1914,7 +1914,7 @@ void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict } } -void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k) { +void dequantize_row_q4_K(const block_q4_K * __restrict__ x, float * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -1953,18 +1953,18 @@ void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int } } -void quantize_row_q4_K(const float * restrict x, void * restrict vy, int k) { +void quantize_row_q4_K(const float * __restrict__ x, void * __restrict__ vy, int k) { assert(k % QK_K == 0); - block_q4_K * restrict y = vy; + block_q4_K * __restrict__ y = vy; quantize_row_q4_K_reference(x, y, k); } -size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { +size_t ggml_quantize_q4_K(const float * __restrict__ src, void * __restrict__ dst, int n, int k, int64_t * __restrict__ hist) { assert(k % QK_K == 0); (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { - block_q4_K * restrict y = (block_q4_K *)dst + j/QK_K; + block_q4_K * __restrict__ y = (block_q4_K *)dst + j/QK_K; quantize_row_q4_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q4_K)); @@ -1972,7 +1972,7 @@ size_t ggml_quantize_q4_K(const float * restrict src, void * restrict dst, int n // ====================== 5-bit (de)-quantization -void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k) { +void quantize_row_q5_K_reference(const float * __restrict__ x, block_q5_K * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2042,8 +2042,8 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict } } - uint8_t * restrict qh = y[i].qh; - uint8_t * restrict ql = y[i].qs; + uint8_t * __restrict__ qh = y[i].qh; + uint8_t * __restrict__ ql = y[i].qs; memset(qh, 0, QK_K/8); uint8_t m1 = 1, m2 = 2; @@ -2090,8 +2090,8 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict } } - uint8_t * restrict qh = y[i].qh; - uint8_t * restrict ql = y[i].qs; + uint8_t * __restrict__ qh = y[i].qh; + uint8_t * __restrict__ ql = y[i].qs; memset(qh, 0, QK_K/8); for (int j = 0; j < 32; ++j) { @@ -2114,7 +2114,7 @@ void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict } } -void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k) { +void dequantize_row_q5_K(const block_q5_K * __restrict__ x, float * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2143,7 +2143,7 @@ void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int } #else float d = GGML_FP16_TO_FP32(x[i].d); - const int8_t * restrict s = x[i].scales; + const int8_t * __restrict__ s = x[i].scales; for (int l = 0; l < 8; ++l) { y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16)); y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16)); @@ -2159,18 +2159,18 @@ void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int } } -void quantize_row_q5_K(const float * restrict x, void * restrict vy, int k) { +void quantize_row_q5_K(const float * __restrict__ x, void * __restrict__ vy, int k) { assert(k % QK_K == 0); - block_q5_K * restrict y = vy; + block_q5_K * __restrict__ y = vy; quantize_row_q5_K_reference(x, y, k); } -size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n, int k, int64_t * restrict hist) { +size_t ggml_quantize_q5_K(const float * __restrict__ src, void * __restrict__ dst, int n, int k, int64_t * __restrict__ hist) { assert(k % QK_K == 0); (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { - block_q5_K * restrict y = (block_q5_K *)dst + j/QK_K; + block_q5_K * __restrict__ y = (block_q5_K *)dst + j/QK_K; quantize_row_q5_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q5_K)); @@ -2178,7 +2178,7 @@ size_t ggml_quantize_q5_K(const float * restrict src, void * restrict dst, int n // ====================== 6-bit (de)-quantization -void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k) { +void quantize_row_q6_K_reference(const float * __restrict__ x, block_q6_K * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2228,8 +2228,8 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict } } - uint8_t * restrict ql = y[i].ql; - uint8_t * restrict qh = y[i].qh; + uint8_t * __restrict__ ql = y[i].ql; + uint8_t * __restrict__ qh = y[i].qh; #if QK_K == 256 for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { @@ -2260,7 +2260,7 @@ void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict } } -void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k) { +void dequantize_row_q6_K(const block_q6_K * __restrict__ x, float * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2268,9 +2268,9 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int const float d = GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict ql = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict sc = x[i].scales; + const uint8_t * __restrict__ ql = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ sc = x[i].scales; #if QK_K == 256 for (int n = 0; n < QK_K; n += 128) { @@ -2307,9 +2307,9 @@ void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int } } -void quantize_row_q6_K(const float * restrict x, void * restrict vy, int k) { +void quantize_row_q6_K(const float * __restrict__ x, void * __restrict__ vy, int k) { assert(k % QK_K == 0); - block_q6_K * restrict y = vy; + block_q6_K * __restrict__ y = vy; quantize_row_q6_K_reference(x, y, k); } @@ -2318,7 +2318,7 @@ size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * (void)hist; // TODO: collect histograms for (int j = 0; j < n; j += k) { - block_q6_K * restrict y = (block_q6_K *)dst + j/QK_K; + block_q6_K * __restrict__ y = (block_q6_K *)dst + j/QK_K; quantize_row_q6_K_reference(src + j, y, k); } return (n/QK_K*sizeof(block_q6_K)); @@ -2326,7 +2326,7 @@ size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * //===================================== Q8_K ============================================== -void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k) { +void quantize_row_q8_K_reference(const float * __restrict__ x, block_q8_K * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2363,7 +2363,7 @@ void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict } } -void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k) { +void dequantize_row_q8_K(const block_q8_K * __restrict__ x, float * __restrict__ y, int k) { assert(k % QK_K == 0); const int nb = k / QK_K; @@ -2374,7 +2374,7 @@ void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int } } -void quantize_row_q8_K(const float * restrict x, void * restrict y, int k) { +void quantize_row_q8_K(const float * __restrict__ x, void * __restrict__ y, int k) { quantize_row_q8_K_reference(x, y, k); } @@ -2423,14 +2423,15 @@ static inline __m128i get_scale_shuffle(int i) { } #endif -void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q4_0_q8_0(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { + //fprintf(stderr, "%s: n:%d s:%f vx:%p vy:%p\n", __func__, n,*s, vx, vy); const int qk = QK8_0; const int nb = n / qk; assert(n % qk == 0); - const block_q4_0 * restrict x = vx; - const block_q8_0 * restrict y = vy; + const block_q4_0 * __restrict__ x = vx; + const block_q8_0 * __restrict__ y = vy; #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); @@ -2439,10 +2440,10 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { - const block_q4_0 * restrict x0 = &x[i + 0]; - const block_q4_0 * restrict x1 = &x[i + 1]; - const block_q8_0 * restrict y0 = &y[i + 0]; - const block_q8_0 * restrict y1 = &y[i + 1]; + const block_q4_0 * __restrict__ x0 = &x[i + 0]; + const block_q4_0 * __restrict__ x1 = &x[i + 1]; + const block_q8_0 * __restrict__ y0 = &y[i + 0]; + const block_q8_0 * __restrict__ y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0x0F); const int8x16_t s8b = vdupq_n_s8(0x8); @@ -2733,14 +2734,14 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, #endif } -void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q4_1_q8_1(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { const int qk = QK8_1; const int nb = n / qk; assert(n % qk == 0); - const block_q4_1 * restrict x = vx; - const block_q8_1 * restrict y = vy; + const block_q4_1 * __restrict__ x = vx; + const block_q8_1 * __restrict__ y = vy; // TODO: add WASM SIMD #if defined(__ARM_NEON) @@ -2752,10 +2753,10 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restri assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { - const block_q4_1 * restrict x0 = &x[i + 0]; - const block_q4_1 * restrict x1 = &x[i + 1]; - const block_q8_1 * restrict y0 = &y[i + 0]; - const block_q8_1 * restrict y1 = &y[i + 1]; + const block_q4_1 * __restrict__ x0 = &x[i + 0]; + const block_q4_1 * __restrict__ x1 = &x[i + 1]; + const block_q8_1 * __restrict__ y0 = &y[i + 0]; + const block_q8_1 * __restrict__ y1 = &y[i + 1]; summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s; @@ -2893,15 +2894,15 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restri #endif } -void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q5_0_q8_0(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { const int qk = QK8_0; const int nb = n / qk; assert(n % qk == 0); assert(qk == QK5_0); - const block_q5_0 * restrict x = vx; - const block_q8_0 * restrict y = vy; + const block_q5_0 * __restrict__ x = vx; + const block_q8_0 * __restrict__ y = vy; #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); @@ -2916,10 +2917,10 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { - const block_q5_0 * restrict x0 = &x[i]; - const block_q5_0 * restrict x1 = &x[i + 1]; - const block_q8_0 * restrict y0 = &y[i]; - const block_q8_0 * restrict y1 = &y[i + 1]; + const block_q5_0 * __restrict__ x0 = &x[i]; + const block_q5_0 * __restrict__ x1 = &x[i + 1]; + const block_q8_0 * __restrict__ y0 = &y[i]; + const block_q8_0 * __restrict__ y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0x0F); @@ -3000,8 +3001,8 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri // TODO: check if unrolling this is better for (int i = 0; i < nb; ++i) { - const block_q5_0 * restrict x0 = &x[i]; - const block_q8_0 * restrict y0 = &y[i]; + const block_q5_0 * __restrict__ x0 = &x[i]; + const block_q8_0 * __restrict__ y0 = &y[i]; const v128_t m4b = wasm_i8x16_splat(0x0F); @@ -3199,15 +3200,15 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri #endif } -void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q5_1_q8_1(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { const int qk = QK8_1; const int nb = n / qk; assert(n % qk == 0); assert(qk == QK5_1); - const block_q5_1 * restrict x = vx; - const block_q8_1 * restrict y = vy; + const block_q5_1 * __restrict__ x = vx; + const block_q8_1 * __restrict__ y = vy; #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); @@ -3225,10 +3226,10 @@ void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restri assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { - const block_q5_1 * restrict x0 = &x[i]; - const block_q5_1 * restrict x1 = &x[i + 1]; - const block_q8_1 * restrict y0 = &y[i]; - const block_q8_1 * restrict y1 = &y[i + 1]; + const block_q5_1 * __restrict__ x0 = &x[i]; + const block_q5_1 * __restrict__ x1 = &x[i + 1]; + const block_q8_1 * __restrict__ y0 = &y[i]; + const block_q8_1 * __restrict__ y1 = &y[i + 1]; const uint8x16_t m4b = vdupq_n_u8(0x0F); @@ -3314,8 +3315,8 @@ void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restri // TODO: check if unrolling this is better for (int i = 0; i < nb; ++i) { - const block_q5_1 * restrict x0 = &x[i]; - const block_q8_1 * restrict y0 = &y[i]; + const block_q5_1 * __restrict__ x0 = &x[i]; + const block_q8_1 * __restrict__ y0 = &y[i]; summs += GGML_FP16_TO_FP32(x0->m) * y0->s; @@ -3518,14 +3519,14 @@ void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restri #endif } -void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q8_0_q8_0(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { const int qk = QK8_0; const int nb = n / qk; assert(n % qk == 0); - const block_q8_0 * restrict x = vx; - const block_q8_0 * restrict y = vy; + const block_q8_0 * __restrict__ x = vx; + const block_q8_0 * __restrict__ y = vy; #if defined(__ARM_NEON) float32x4_t sumv0 = vdupq_n_f32(0.0f); @@ -3534,10 +3535,10 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri assert(nb % 2 == 0); // TODO: handle odd nb for (int i = 0; i < nb; i += 2) { - const block_q8_0 * restrict x0 = &x[i + 0]; - const block_q8_0 * restrict x1 = &x[i + 1]; - const block_q8_0 * restrict y0 = &y[i + 0]; - const block_q8_0 * restrict y1 = &y[i + 1]; + const block_q8_0 * __restrict__ x0 = &x[i + 0]; + const block_q8_0 * __restrict__ x1 = &x[i + 1]; + const block_q8_0 * __restrict__ y0 = &y[i + 0]; + const block_q8_0 * __restrict__ y1 = &y[i + 1]; const int8x16_t x0_0 = vld1q_s8(x0->qs); const int8x16_t x0_1 = vld1q_s8(x0->qs + 16); @@ -3642,10 +3643,10 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri } #if QK_K == 256 -void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q2_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { - const block_q2_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q2_K * __restrict__ x = vx; + const block_q8_K * __restrict__ y = vy; const int nb = n / QK_K; @@ -3667,9 +3668,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - const uint8_t * restrict sc = x[i].scales; + const uint8_t * __restrict__ q2 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; + const uint8_t * __restrict__ sc = x[i].scales; const uint8x16_t mins_and_scales = vld1q_u8(sc); const uint8x16_t scales = vandq_u8(mins_and_scales, m4); @@ -3746,8 +3747,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q2 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); const __m128i scales8 = _mm_and_si128(mins_and_scales, m4); @@ -3813,8 +3814,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q2 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; // load mins and scales from block_q2_K.scales[QK_K/16] const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); @@ -4035,10 +4036,10 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri #else -void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q2_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { - const block_q2_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q2_K * __restrict__ x = vx; + const block_q8_K * __restrict__ y = vy; const int nb = n / QK_K; @@ -4061,9 +4062,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * (float)x[i].d; const float dmin = -y[i].d * (float)x[i].dmin; - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + const uint8_t * __restrict__ q2 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; + const uint32_t * __restrict__ sc = (const uint32_t *)x[i].scales; aux32[0] = sc[0] & 0x0f0f0f0f; aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; @@ -4114,8 +4115,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri __m256 acc = _mm256_setzero_ps(); uint32_t ud, um; - const uint8_t * restrict db = (const uint8_t *)&ud; - const uint8_t * restrict mb = (const uint8_t *)&um; + const uint8_t * __restrict__ db = (const uint8_t *)&ud; + const uint8_t * __restrict__ mb = (const uint8_t *)&um; float summs = 0; @@ -4126,10 +4127,10 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q2 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; - const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + const uint32_t * __restrict__ sc = (const uint32_t *)x[i].scales; ud = (sc[0] >> 0) & 0x0f0f0f0f; um = (sc[0] >> 4) & 0x0f0f0f0f; @@ -4166,8 +4167,8 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri __m256 acc = _mm256_setzero_ps(); uint32_t ud, um; - const uint8_t * restrict db = (const uint8_t *)&ud; - const uint8_t * restrict mb = (const uint8_t *)&um; + const uint8_t * __restrict__ db = (const uint8_t *)&ud; + const uint8_t * __restrict__ mb = (const uint8_t *)&um; float summs = 0; @@ -4178,10 +4179,10 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q2 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; - const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + const uint32_t * __restrict__ sc = (const uint32_t *)x[i].scales; ud = (sc[0] >> 0) & 0x0f0f0f0f; um = (sc[0] >> 4) & 0x0f0f0f0f; @@ -4227,9 +4228,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * (float)x[i].d; const float dmin = -y[i].d * (float)x[i].dmin; - const uint8_t * restrict q2 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + const uint8_t * __restrict__ q2 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; + const uint32_t * __restrict__ sc = (const uint32_t *)x[i].scales; aux32[0] = sc[0] & 0x0f0f0f0f; aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; @@ -4311,14 +4312,14 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri #endif #if QK_K == 256 -void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q3_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { assert(n % QK_K == 0); const uint32_t kmask1 = 0x03030303; const uint32_t kmask2 = 0x0f0f0f0f; - const block_q3_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q3_K * __restrict__ x = vx; + const block_q8_K * __restrict__ y = vy; const int nb = n / QK_K; @@ -4346,9 +4347,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q3 = x[i].qs; - const uint8_t * restrict qh = x[i].hmask; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q3 = x[i].qs; + const uint8_t * __restrict__ qh = x[i].hmask; + const int8_t * __restrict__ q8 = y[i].qs; ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); @@ -4454,8 +4455,8 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q3 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; // Set up scales memcpy(aux, x[i].scales, 12); @@ -4559,8 +4560,8 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q3 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; // Set up scales aux = (const uint32_t *)x[i].scales; @@ -4694,9 +4695,9 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q3 = x[i].qs; - const uint8_t * restrict qh = x[i].hmask; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q3 = x[i].qs; + const uint8_t * __restrict__ qh = x[i].hmask; + const int8_t * __restrict__ q8 = y[i].qs; memcpy(aux, x[i].scales, 12); utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); @@ -4806,11 +4807,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q3 = x[i].qs; - const uint8_t * restrict hm = x[i].hmask; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q3 = x[i].qs; + const uint8_t * __restrict__ hm = x[i].hmask; + const int8_t * __restrict__ q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); - int8_t * restrict a = aux8; + int8_t * __restrict__ a = aux8; uint8_t m = 1; for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3; @@ -4855,11 +4856,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri #else -void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q3_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { assert(n % QK_K == 0); - const block_q3_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q3_K * __restrict__ x = vx; + const block_q8_K * __restrict__ y = vy; const int nb = n / QK_K; @@ -4947,8 +4948,8 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q3 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; const uint16_t a = *(const uint16_t *)x[i].scales; aux16[0] = a & 0x0f0f; @@ -5018,8 +5019,8 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q3 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; const uint16_t a = *(const uint16_t *)x[i].scales; aux16[0] = a & 0x0f0f; @@ -5098,8 +5099,8 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q3 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q3 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; const uint16_t a = *(const uint16_t *)x[i].scales; aux16[0] = a & 0x0f0f; @@ -5173,10 +5174,10 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q3 = x[i].qs; - const uint8_t * restrict hm = x[i].hmask; - const int8_t * restrict q8 = y[i].qs; - int8_t * restrict a = aux8; + const uint8_t * __restrict__ q3 = x[i].qs; + const uint8_t * __restrict__ hm = x[i].hmask; + const int8_t * __restrict__ q8 = y[i].qs; + int8_t * __restrict__ a = aux8; for (int l = 0; l < 8; ++l) { a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4); a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4); @@ -5213,11 +5214,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri #endif #if QK_K == 256 -void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q4_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { assert(n % QK_K == 0); - const block_q4_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q4_K * __restrict__ x = vx; + const block_q8_K * __restrict__ y = vy; const int nb = n / QK_K; @@ -5262,8 +5263,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri const uint8_t * scales = (const uint8_t *)utmp; - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; int32_t sumi1 = 0; int32_t sumi2 = 0; @@ -5334,8 +5335,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri utmp[2] = uaux; utmp[0] &= kmask1; - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); @@ -5393,8 +5394,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); @@ -5494,8 +5495,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi); - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; vl = 32; @@ -5548,10 +5549,10 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); - int8_t * restrict a = aux8; + int8_t * __restrict__ a = aux8; for (int j = 0; j < QK_K/64; ++j) { for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); a += 32; @@ -5594,11 +5595,11 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri #endif } #else -void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q4_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { assert(n % QK_K == 0); - const block_q4_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q4_K * __restrict__ x = vx; + const block_q8_K * __restrict__ y = vy; const int nb = n / QK_K; @@ -5618,14 +5619,14 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri float sum_mins = 0.f; uint16_t aux16[2]; - const uint8_t * restrict scales = (const uint8_t *)aux16; + const uint8_t * __restrict__ scales = (const uint8_t *)aux16; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; - const uint16_t * restrict a = (const uint16_t *)x[i].scales; + const uint16_t * __restrict__ a = (const uint16_t *)x[i].scales; aux16[0] = a[0] & 0x0f0f; aux16[1] = (a[0] >> 4) & 0x0f0f; @@ -5698,8 +5699,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); const __m256i q4l = _mm256_and_si256(q4bits, m4); @@ -5744,8 +5745,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0); @@ -5778,16 +5779,16 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri #elif defined __riscv_v_intrinsic uint16_t s16[2]; - const uint8_t * restrict scales = (const uint8_t *)s16; + const uint8_t * __restrict__ scales = (const uint8_t *)s16; float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; - const uint16_t * restrict b = (const uint16_t *)x[i].scales; + const uint16_t * __restrict__ b = (const uint16_t *)x[i].scales; s16[0] = b[0] & 0x0f0f; s16[1] = (b[0] >> 4) & 0x0f0f; @@ -5827,17 +5828,17 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri memset(sums, 0, 8*sizeof(float)); uint16_t s16[2]; - const uint8_t * restrict scales = (const uint8_t *)s16; + const uint8_t * __restrict__ scales = (const uint8_t *)s16; float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; - uint8_t * restrict a = aux8; + const uint8_t * __restrict__ q4 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; + uint8_t * __restrict__ a = aux8; for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF; for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4; - const uint16_t * restrict b = (const uint16_t *)x[i].scales; + const uint16_t * __restrict__ b = (const uint16_t *)x[i].scales; s16[0] = b[0] & 0x0f0f; s16[1] = (b[0] >> 4) & 0x0f0f; @@ -5861,11 +5862,11 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri #endif #if QK_K == 256 -void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q5_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { assert(n % QK_K == 0); - const block_q5_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q5_K * __restrict__ x = vx; + const block_q8_K * __restrict__ y = vy; const int nb = n / QK_K; @@ -5911,9 +5912,9 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri const uint8_t * scales = (const uint8_t *)utmp; - const uint8_t * restrict q5 = x[i].qs; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q5 = x[i].qs; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); @@ -5976,8 +5977,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q5 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q5 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; #if QK_K == 256 const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); @@ -6065,8 +6066,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); - const uint8_t * restrict q5 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q5 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; memcpy(utmp, x[i].scales, 12); utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); @@ -6163,9 +6164,9 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri vl = 8; - const uint8_t * restrict q5 = x[i].qs; - const uint8_t * restrict hm = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q5 = x[i].qs; + const uint8_t * __restrict__ hm = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d; @@ -6249,11 +6250,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].qs; - const uint8_t * restrict hm = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].qs; + const uint8_t * __restrict__ hm = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); - int8_t * restrict a = aux8; + int8_t * __restrict__ a = aux8; uint8_t m = 1; for (int j = 0; j < QK_K/64; ++j) { for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); @@ -6302,11 +6303,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri #else -void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q5_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { assert(n % QK_K == 0); - const block_q5_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q5_K * __restrict__ x = vx; + const block_q8_K * __restrict__ y = vy; const int nb = n / QK_K; @@ -6328,9 +6329,9 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * (float)x[i].d; const int8_t * sc = x[i].scales; - const uint8_t * restrict q5 = x[i].qs; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q5 = x[i].qs; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; const uint8x8_t qhbits = vld1_u8(qh); @@ -6387,8 +6388,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q5 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q5 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); @@ -6433,8 +6434,8 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q5 = x[i].qs; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q5 = x[i].qs; + const int8_t * __restrict__ q8 = y[i].qs; const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); @@ -6490,9 +6491,9 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * (float)x[i].d; const int8_t * sc = x[i].scales; - const uint8_t * restrict q5 = x[i].qs; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q5 = x[i].qs; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); @@ -6560,10 +6561,10 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].qs; - const uint8_t * restrict hm = x[i].qh; - const int8_t * restrict q8 = y[i].qs; - int8_t * restrict a = aux8; + const uint8_t * __restrict__ q4 = x[i].qs; + const uint8_t * __restrict__ hm = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; + int8_t * __restrict__ a = aux8; for (int l = 0; l < 32; ++l) { a[l+ 0] = q4[l] & 0xF; a[l+32] = q4[l] >> 4; @@ -6574,7 +6575,7 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri } const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const int8_t * restrict sc = x[i].scales; + const int8_t * __restrict__ sc = x[i].scales; for (int j = 0; j < QK_K/16; ++j) { const float dl = d * sc[j]; @@ -6591,11 +6592,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri #if QK_K == 256 -void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q6_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { assert(n % QK_K == 0); - const block_q6_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q6_K * __restrict__ x = (const block_q6_K *)vx; + const block_q8_K * __restrict__ y = (const block_q8_K *)vy; const int nb = n / QK_K; @@ -6618,11 +6619,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const float d_all = GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q6 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q6 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; - const int8_t * restrict scale = x[i].scales; + const int8_t * __restrict__ scale = x[i].scales; const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums); const int8x16_t scales = vld1q_s8(scale); @@ -6750,9 +6751,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); @@ -6830,9 +6831,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); @@ -6942,11 +6943,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; - const uint8_t * restrict q6 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q6 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; - const int8_t * restrict scale = x[i].scales; + const int8_t * __restrict__ scale = x[i].scales; size_t vl; @@ -7030,11 +7031,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); - int8_t * restrict a = aux8; + int8_t * __restrict__ a = aux8; for (int j = 0; j < QK_K; j += 128) { for (int l = 0; l < 32; ++l) { a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; @@ -7067,11 +7068,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri #else -void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) { +void ggml_vec_dot_q6_K_q8_K(const int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy) { assert(n % QK_K == 0); - const block_q6_K * restrict x = vx; - const block_q8_K * restrict y = vy; + const block_q6_K * __restrict__ x = vx; + const block_q8_K * __restrict__ y = vy; const int nb = n / QK_K; @@ -7094,11 +7095,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const float d_all = (float)x[i].d; - const uint8_t * restrict q6 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q6 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; - const int8_t * restrict scale = x[i].scales; + const int8_t * __restrict__ scale = x[i].scales; int32_t isum = 0; @@ -7157,9 +7158,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); @@ -7214,9 +7215,9 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); @@ -7281,11 +7282,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri const float d_all = (float)x[i].d; - const uint8_t * restrict q6 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q6 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; - const int8_t * restrict scale = x[i].scales; + const int8_t * __restrict__ scale = x[i].scales; int32_t isum = 0; @@ -7350,11 +7351,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri float sumf = 0; for (int i = 0; i < nb; ++i) { - const uint8_t * restrict q4 = x[i].ql; - const uint8_t * restrict qh = x[i].qh; - const int8_t * restrict q8 = y[i].qs; + const uint8_t * __restrict__ q4 = x[i].ql; + const uint8_t * __restrict__ qh = x[i].qh; + const int8_t * __restrict__ q8 = y[i].qs; memset(aux32, 0, 8*sizeof(int32_t)); - int8_t * restrict a = aux8; + int8_t * __restrict__ a = aux8; for (int l = 0; l < 16; ++l) { a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; diff --git a/ggml-quants.h b/ggml-quants.h index 70c12c27465e8..2706e36ada7d3 100644 --- a/ggml-quants.h +++ b/ggml-quants.h @@ -167,58 +167,58 @@ static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_ // Quantization -void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k); -void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k); -void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k); -void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k); -void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k); -void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k); - -void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int k); -void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int k); -void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int k); -void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int k); -void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int k); -void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int k); - -void quantize_row_q4_0(const float * restrict x, void * restrict y, int k); -void quantize_row_q4_1(const float * restrict x, void * restrict y, int k); -void quantize_row_q5_0(const float * restrict x, void * restrict y, int k); -void quantize_row_q5_1(const float * restrict x, void * restrict y, int k); -void quantize_row_q8_0(const float * restrict x, void * restrict y, int k); -void quantize_row_q8_1(const float * restrict x, void * restrict y, int k); - -void quantize_row_q2_K(const float * restrict x, void * restrict y, int k); -void quantize_row_q3_K(const float * restrict x, void * restrict y, int k); -void quantize_row_q4_K(const float * restrict x, void * restrict y, int k); -void quantize_row_q5_K(const float * restrict x, void * restrict y, int k); -void quantize_row_q6_K(const float * restrict x, void * restrict y, int k); -void quantize_row_q8_K(const float * restrict x, void * restrict y, int k); +void quantize_row_q4_0_reference(const float * __restrict__ x, block_q4_0 * __restrict__ y, int k); +void quantize_row_q4_1_reference(const float * __restrict__ x, block_q4_1 * __restrict__ y, int k); +void quantize_row_q5_0_reference(const float * __restrict__ x, block_q5_0 * __restrict__ y, int k); +void quantize_row_q5_1_reference(const float * __restrict__ x, block_q5_1 * __restrict__ y, int k); +void quantize_row_q8_0_reference(const float * __restrict__ x, block_q8_0 * __restrict__ y, int k); +void quantize_row_q8_1_reference(const float * __restrict__ x, block_q8_1 * __restrict__ y, int k); + +void quantize_row_q2_K_reference(const float * __restrict__ x, block_q2_K * __restrict__ y, int k); +void quantize_row_q3_K_reference(const float * __restrict__ x, block_q3_K * __restrict__ y, int k); +void quantize_row_q4_K_reference(const float * __restrict__ x, block_q4_K * __restrict__ y, int k); +void quantize_row_q5_K_reference(const float * __restrict__ x, block_q5_K * __restrict__ y, int k); +void quantize_row_q6_K_reference(const float * __restrict__ x, block_q6_K * __restrict__ y, int k); +void quantize_row_q8_K_reference(const float * __restrict__ x, block_q8_K * __restrict__ y, int k); + +void quantize_row_q4_0(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q4_1(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q5_0(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q5_1(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q8_0(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q8_1(const float * __restrict__ x, void * __restrict__ y, int k); + +void quantize_row_q2_K(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q3_K(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q4_K(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q5_K(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q6_K(const float * __restrict__ x, void * __restrict__ y, int k); +void quantize_row_q8_K(const float * __restrict__ x, void * __restrict__ y, int k); // Dequantization -void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k); -void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k); -void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k); -void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k); -void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int k); -//void dequantize_row_q8_1(const block_q8_1 * restrict x, float * restrict y, int k); - -void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int k); -void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int k); -void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int k); -void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int k); -void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int k); -void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int k); +void dequantize_row_q4_0(const block_q4_0 * __restrict__ x, float * __restrict__ y, int k); +void dequantize_row_q4_1(const block_q4_1 * __restrict__ x, float * __restrict__ y, int k); +void dequantize_row_q5_0(const block_q5_0 * __restrict__ x, float * __restrict__ y, int k); +void dequantize_row_q5_1(const block_q5_1 * __restrict__ x, float * __restrict__ y, int k); +void dequantize_row_q8_0(const block_q8_0 * __restrict__ x, float * __restrict__ y, int k); +//void dequantize_row_q8_1(const block_q8_1 * __restrict__ x, float * __restrict__ y, int k); + +void dequantize_row_q2_K(const block_q2_K * __restrict__ x, float * __restrict__ y, int k); +void dequantize_row_q3_K(const block_q3_K * __restrict__ x, float * __restrict__ y, int k); +void dequantize_row_q4_K(const block_q4_K * __restrict__ x, float * __restrict__ y, int k); +void dequantize_row_q5_K(const block_q5_K * __restrict__ x, float * __restrict__ y, int k); +void dequantize_row_q6_K(const block_q6_K * __restrict__ x, float * __restrict__ y, int k); +void dequantize_row_q8_K(const block_q8_K * __restrict__ x, float * __restrict__ y, int k); // Dot product -void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy); -void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy); -void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy); -void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, const void * restrict vx, const void * restrict vy); -void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, const void * restrict vx, const void * restrict vy); - -void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy); -void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy); -void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy); -void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy); -void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, const void * restrict vx, const void * restrict vy); +void ggml_vec_dot_q4_0_q8_0(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); +void ggml_vec_dot_q4_1_q8_1(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); +void ggml_vec_dot_q5_0_q8_0(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); +void ggml_vec_dot_q5_1_q8_1(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); +void ggml_vec_dot_q8_0_q8_0(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); + +void ggml_vec_dot_q2_K_q8_K(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); +void ggml_vec_dot_q3_K_q8_K(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); +void ggml_vec_dot_q4_K_q8_K(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); +void ggml_vec_dot_q5_K_q8_K(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); +void ggml_vec_dot_q6_K_q8_K(int n, float * __restrict__ s, const void * __restrict__ vx, const void * __restrict__ vy); diff --git a/ggml.c b/ggml.cpp similarity index 95% rename from ggml.c rename to ggml.cpp index f92292b39c635..f3cb26f952f89 100644 --- a/ggml.c +++ b/ggml.cpp @@ -1,3 +1,7 @@ + +//https://github.com/Neargye/magic_enum.git +#include + #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows #define _USE_MATH_DEFINES // For M_PI on MSVC @@ -86,7 +90,13 @@ static int sched_yield (void) { } #else #include +//#include +#ifdef __cplusplus +#include +using namespace std; +#else #include +#endif typedef void * thread_ret_t; @@ -409,195 +419,195 @@ int64_t ggml_cycles_per_ms(void) { static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float); -static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y); -static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y); +static void ggml_vec_dot_f32(const int n, float * __restrict__ s, const float * __restrict__ x, const float * __restrict__ y); +static void ggml_vec_dot_f16(const int n, float * __restrict__ s, ggml_fp16_t * __restrict__ x, ggml_fp16_t * __restrict__ y); static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { - [GGML_TYPE_I8] = { - .type_name = "i8", - .blck_size = 1, - .type_size = sizeof(int8_t), - .is_quantized = false, - }, - [GGML_TYPE_I16] = { - .type_name = "i16", - .blck_size = 1, - .type_size = sizeof(int16_t), - .is_quantized = false, - }, - [GGML_TYPE_I32] = { - .type_name = "i32", - .blck_size = 1, - .type_size = sizeof(int32_t), - .is_quantized = false, - }, - [GGML_TYPE_F32] = { - .type_name = "f32", - .blck_size = 1, - .type_size = sizeof(float), - .is_quantized = false, - .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32, - .vec_dot_type = GGML_TYPE_F32, - }, - [GGML_TYPE_F16] = { - .type_name = "f16", - .blck_size = 1, - .type_size = sizeof(ggml_fp16_t), - .is_quantized = false, - .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row, - .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row, - .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row, - .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16, - .vec_dot_type = GGML_TYPE_F16, - }, - [GGML_TYPE_Q4_0] = { - .type_name = "q4_0", - .blck_size = QK4_0, - .type_size = sizeof(block_q4_0), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q4_0, - .from_float = quantize_row_q4_0, - .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference, - .vec_dot = ggml_vec_dot_q4_0_q8_0, - .vec_dot_type = GGML_TYPE_Q8_0, - }, - [GGML_TYPE_Q4_1] = { - .type_name = "q4_1", - .blck_size = QK4_1, - .type_size = sizeof(block_q4_1), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q4_1, - .from_float = quantize_row_q4_1, - .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference, - .vec_dot = ggml_vec_dot_q4_1_q8_1, - .vec_dot_type = GGML_TYPE_Q8_1, - }, - [4] = { // GGML_TYPE_Q4_2 - .type_name = "DEPRECATED", - .blck_size = 0, - .type_size = 0, - .is_quantized = false, - .to_float = NULL, - .from_float = NULL, - .from_float_reference = NULL, - .vec_dot = NULL, - .vec_dot_type = GGML_TYPE_COUNT, - }, - [5] = { // GGML_TYPE_Q4_3 - .type_name = "DEPRECATED", - .blck_size = 0, - .type_size = 0, - .is_quantized = false, - .to_float = NULL, - .from_float = NULL, - .from_float_reference = NULL, - .vec_dot = NULL, - .vec_dot_type = GGML_TYPE_COUNT, - }, - [GGML_TYPE_Q5_0] = { - .type_name = "q5_0", - .blck_size = QK5_0, - .type_size = sizeof(block_q5_0), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q5_0, - .from_float = quantize_row_q5_0, - .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference, - .vec_dot = ggml_vec_dot_q5_0_q8_0, - .vec_dot_type = GGML_TYPE_Q8_0, - }, - [GGML_TYPE_Q5_1] = { - .type_name = "q5_1", - .blck_size = QK5_1, - .type_size = sizeof(block_q5_1), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q5_1, - .from_float = quantize_row_q5_1, - .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference, - .vec_dot = ggml_vec_dot_q5_1_q8_1, - .vec_dot_type = GGML_TYPE_Q8_1, - }, - [GGML_TYPE_Q8_0] = { - .type_name = "q8_0", - .blck_size = QK8_0, - .type_size = sizeof(block_q8_0), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q8_0, - .from_float = quantize_row_q8_0, - .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference, - .vec_dot = ggml_vec_dot_q8_0_q8_0, - .vec_dot_type = GGML_TYPE_Q8_0, - }, - [GGML_TYPE_Q8_1] = { - .type_name = "q8_1", - .blck_size = QK8_1, - .type_size = sizeof(block_q8_1), - .is_quantized = true, - .from_float = quantize_row_q8_1, - .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference, - .vec_dot_type = GGML_TYPE_Q8_1, - }, - [GGML_TYPE_Q2_K] = { - .type_name = "q2_K", - .blck_size = QK_K, - .type_size = sizeof(block_q2_K), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q2_K, - .from_float = quantize_row_q2_K, - .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference, - .vec_dot = ggml_vec_dot_q2_K_q8_K, - .vec_dot_type = GGML_TYPE_Q8_K, - }, - [GGML_TYPE_Q3_K] = { - .type_name = "q3_K", - .blck_size = QK_K, - .type_size = sizeof(block_q3_K), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q3_K, - .from_float = quantize_row_q3_K, - .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference, - .vec_dot = ggml_vec_dot_q3_K_q8_K, - .vec_dot_type = GGML_TYPE_Q8_K, - }, - [GGML_TYPE_Q4_K] = { - .type_name = "q4_K", - .blck_size = QK_K, - .type_size = sizeof(block_q4_K), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q4_K, - .from_float = quantize_row_q4_K, - .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference, - .vec_dot = ggml_vec_dot_q4_K_q8_K, - .vec_dot_type = GGML_TYPE_Q8_K, - }, - [GGML_TYPE_Q5_K] = { - .type_name = "q5_K", - .blck_size = QK_K, - .type_size = sizeof(block_q5_K), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q5_K, - .from_float = quantize_row_q5_K, - .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference, - .vec_dot = ggml_vec_dot_q5_K_q8_K, - .vec_dot_type = GGML_TYPE_Q8_K, - }, - [GGML_TYPE_Q6_K] = { - .type_name = "q6_K", - .blck_size = QK_K, - .type_size = sizeof(block_q6_K), - .is_quantized = true, - .to_float = (ggml_to_float_t) dequantize_row_q6_K, - .from_float = quantize_row_q6_K, - .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference, - .vec_dot = ggml_vec_dot_q6_K_q8_K, - .vec_dot_type = GGML_TYPE_Q8_K, - }, - [GGML_TYPE_Q8_K] = { - .type_name = "q8_K", - .blck_size = QK_K, - .type_size = sizeof(block_q8_K), - .is_quantized = true, - .from_float = quantize_row_q8_K, - } + // [GGML_TYPE_I8] = { + // .type_name = "i8", + // .blck_size = 1, + // .type_size = sizeof(int8_t), + // .is_quantized = false, + // }, + // [GGML_TYPE_I16] = { + // .type_name = "i16", + // .blck_size = 1, + // .type_size = sizeof(int16_t), + // .is_quantized = false, + // }, + // [GGML_TYPE_I32] = { + // .type_name = "i32", + // .blck_size = 1, + // .type_size = sizeof(int32_t), + // .is_quantized = false, + // }, + // [GGML_TYPE_F32] = { + // .type_name = "f32", + // .blck_size = 1, + // .type_size = sizeof(float), + // .is_quantized = false, + // .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32, + // .vec_dot_type = GGML_TYPE_F32, + // }, + // [GGML_TYPE_F16] = { + // .type_name = "f16", + // .blck_size = 1, + // .type_size = sizeof(ggml_fp16_t), + // .is_quantized = false, + // .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row, + // .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row, + // .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row, + // .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16, + // .vec_dot_type = GGML_TYPE_F16, + // }, + // [GGML_TYPE_Q4_0] = { + // .type_name = "q4_0", + // .blck_size = QK4_0, + // .type_size = sizeof(block_q4_0), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q4_0, + // .from_float = quantize_row_q4_0, + // .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference, + // .vec_dot = ggml_vec_dot_q4_0_q8_0, + // .vec_dot_type = GGML_TYPE_Q8_0, + // }, + // [GGML_TYPE_Q4_1] = { + // .type_name = "q4_1", + // .blck_size = QK4_1, + // .type_size = sizeof(block_q4_1), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q4_1, + // .from_float = quantize_row_q4_1, + // .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference, + // .vec_dot = ggml_vec_dot_q4_1_q8_1, + // .vec_dot_type = GGML_TYPE_Q8_1, + // }, + // [4] = { // GGML_TYPE_Q4_2 + // .type_name = "DEPRECATED", + // .blck_size = 0, + // .type_size = 0, + // .is_quantized = false, + // .to_float = NULL, + // .from_float = NULL, + // .from_float_reference = NULL, + // .vec_dot = NULL, + // .vec_dot_type = GGML_TYPE_COUNT, + // }, + // [5] = { // GGML_TYPE_Q4_3 + // .type_name = "DEPRECATED", + // .blck_size = 0, + // .type_size = 0, + // .is_quantized = false, + // .to_float = NULL, + // .from_float = NULL, + // .from_float_reference = NULL, + // .vec_dot = NULL, + // .vec_dot_type = GGML_TYPE_COUNT, + // }, + // [GGML_TYPE_Q5_0] = { + // .type_name = "q5_0", + // .blck_size = QK5_0, + // .type_size = sizeof(block_q5_0), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q5_0, + // .from_float = quantize_row_q5_0, + // .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference, + // .vec_dot = ggml_vec_dot_q5_0_q8_0, + // .vec_dot_type = GGML_TYPE_Q8_0, + // }, + // [GGML_TYPE_Q5_1] = { + // .type_name = "q5_1", + // .blck_size = QK5_1, + // .type_size = sizeof(block_q5_1), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q5_1, + // .from_float = quantize_row_q5_1, + // .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference, + // .vec_dot = ggml_vec_dot_q5_1_q8_1, + // .vec_dot_type = GGML_TYPE_Q8_1, + // }, + // [GGML_TYPE_Q8_0] = { + // .type_name = "q8_0", + // .blck_size = QK8_0, + // .type_size = sizeof(block_q8_0), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q8_0, + // .from_float = quantize_row_q8_0, + // .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference, + // .vec_dot = ggml_vec_dot_q8_0_q8_0, + // .vec_dot_type = GGML_TYPE_Q8_0, + // }, + // [GGML_TYPE_Q8_1] = { + // .type_name = "q8_1", + // .blck_size = QK8_1, + // .type_size = sizeof(block_q8_1), + // .is_quantized = true, + // .from_float = quantize_row_q8_1, + // .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference, + // .vec_dot_type = GGML_TYPE_Q8_1, + // }, + // [GGML_TYPE_Q2_K] = { + // .type_name = "q2_K", + // .blck_size = QK_K, + // .type_size = sizeof(block_q2_K), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q2_K, + // .from_float = quantize_row_q2_K, + // .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference, + // .vec_dot = ggml_vec_dot_q2_K_q8_K, + // .vec_dot_type = GGML_TYPE_Q8_K, + // }, + // [GGML_TYPE_Q3_K] = { + // .type_name = "q3_K", + // .blck_size = QK_K, + // .type_size = sizeof(block_q3_K), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q3_K, + // .from_float = quantize_row_q3_K, + // .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference, + // .vec_dot = ggml_vec_dot_q3_K_q8_K, + // .vec_dot_type = GGML_TYPE_Q8_K, + // }, + // [GGML_TYPE_Q4_K] = { + // .type_name = "q4_K", + // .blck_size = QK_K, + // .type_size = sizeof(block_q4_K), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q4_K, + // .from_float = quantize_row_q4_K, + // .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference, + // .vec_dot = ggml_vec_dot_q4_K_q8_K, + // .vec_dot_type = GGML_TYPE_Q8_K, + // }, + // [GGML_TYPE_Q5_K] = { + // .type_name = "q5_K", + // .blck_size = QK_K, + // .type_size = sizeof(block_q5_K), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q5_K, + // .from_float = quantize_row_q5_K, + // .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference, + // .vec_dot = ggml_vec_dot_q5_K_q8_K, + // .vec_dot_type = GGML_TYPE_Q8_K, + // }, + // [GGML_TYPE_Q6_K] = { + // .type_name = "q6_K", + // .blck_size = QK_K, + // .type_size = sizeof(block_q6_K), + // .is_quantized = true, + // .to_float = (ggml_to_float_t) dequantize_row_q6_K, + // .from_float = quantize_row_q6_K, + // .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference, + // .vec_dot = ggml_vec_dot_q6_K_q8_K, + // .vec_dot_type = GGML_TYPE_Q8_K, + // }, + // [GGML_TYPE_Q8_K] = { + // .type_name = "q8_K", + // .blck_size = QK_K, + // .type_size = sizeof(block_q8_K), + // .is_quantized = true, + // .from_float = quantize_row_q8_K, + // } }; // For internal test use @@ -1160,7 +1170,7 @@ inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; } inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; } -static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) { +static void ggml_vec_dot_f32(const int n, float * __restrict__ s, const float * __restrict__ x, const float * __restrict__ y) { #ifdef GGML_SIMD float sumf = 0.0f; const int np = (n & ~(GGML_F32_STEP - 1)); @@ -1197,7 +1207,7 @@ static void ggml_vec_dot_f32(const int n, float * restrict s, const float * rest *s = sumf; } -static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) { +static void ggml_vec_dot_f16(const int n, float * __restrict__ s, ggml_fp16_t * __restrict__ x, ggml_fp16_t * __restrict__ y) { ggml_float sumf = 0.0; #if defined(GGML_SIMD) @@ -1235,10 +1245,10 @@ static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * rest // compute GGML_VEC_DOT_UNROLL dot products at once // xs - x row stride in bytes -inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) { +inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * __restrict__ s, void * __restrict__ xv, ggml_fp16_t * __restrict__ y) { ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 }; - ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL]; + ggml_fp16_t * __restrict__ x[GGML_VEC_DOT_UNROLL]; for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) { x[i] = (ggml_fp16_t *) ((char *) xv + i*xs); @@ -1288,7 +1298,7 @@ inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * re } } -inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) { +inline static void ggml_vec_mad_f32(const int n, float * __restrict__ y, const float * __restrict__ x, const float v) { #if defined(GGML_SIMD) const int np = (n & ~(GGML_F32_STEP - 1)); @@ -1320,10 +1330,10 @@ inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float } // xs and vs are byte strides of x and v -inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) { +inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * __restrict__ y, const float * __restrict__ xv, const float * __restrict__ vv) { - const float * restrict x[GGML_VEC_MAD_UNROLL]; - const float * restrict v[GGML_VEC_MAD_UNROLL]; + const float * __restrict__ x[GGML_VEC_MAD_UNROLL]; + const float * __restrict__ v[GGML_VEC_MAD_UNROLL]; for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) { x[i] = (const float *) ((const char *) xv + i*xs); @@ -1808,12 +1818,31 @@ struct ggml_context { struct ggml_scratch scratch; struct ggml_scratch scratch_save; + + ggml_context(): + mem_size(0), + mem_buffer(0), + mem_buffer_owned(0), + no_alloc(0), + no_alloc_save(0), + n_objects(0), + objects_begin(0), + objects_end(0), + scratch(), + scratch_save() + { + + } }; struct ggml_context_container { bool used; struct ggml_context context; + + ggml_context_container(): used(0),context(){ + + } }; // @@ -1841,6 +1870,11 @@ struct ggml_numa_nodes { struct ggml_state { struct ggml_context_container contexts[GGML_MAX_CONTEXTS]; struct ggml_numa_nodes numa; + + ggml_state():contexts(), numa() + { + + } }; // global state @@ -2176,17 +2210,18 @@ static inline int ggml_up(int n, int m) { //////////////////////////////////////////////////////////////////////////////// struct ggml_context * ggml_init(struct ggml_init_params params) { - // make this function thread safe - ggml_critical_section_start(); - - static bool is_first_call = true; - - if (is_first_call) { - // initialize time system (required on Windows) - ggml_time_init(); - - // initialize GELU, Quick GELU, SILU and EXP F32 tables - { + struct ggml_context * ctx = NULL; + static bool is_first_call = true; + // make this function thread safe + ggml_critical_section_start(); + + + if (is_first_call) { + // initialize time system (required on Windows) + ggml_time_init(); + + // initialize GELU, Quick GELU, SILU and EXP F32 tables + { const uint64_t t_start = ggml_time_us(); UNUSED(t_start); ggml_fp16_t ii; @@ -2209,13 +2244,15 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { { const uint64_t t_start = ggml_time_us(); UNUSED(t_start); - g_state = (struct ggml_state) { - /*.contexts =*/ { { 0 } }, - /*.numa =*/ { - .n_nodes = 0, - .total_cpus = 0, - }, - }; + // TODOFIXME + // g_state = (struct ggml_state) { + // struct ggml_context_container contexts[64]; + ///g_state.contexts[0][0] = 0 ; + g_state.numa.n_nodes = 0; + g_state.numa.total_cpus = 0; + + + for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) { g_state.contexts[i].used = false; @@ -2238,7 +2275,7 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { } // find non-used context in g_state - struct ggml_context * ctx = NULL; + for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { if (!g_state.contexts[i].used) { @@ -2265,18 +2302,19 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN); - *ctx = (struct ggml_context) { - /*.mem_size =*/ mem_size, - /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size), - /*.mem_buffer_owned =*/ params.mem_buffer ? false : true, - /*.no_alloc =*/ params.no_alloc, - /*.no_alloc_save =*/ params.no_alloc, - /*.n_objects =*/ 0, - /*.objects_begin =*/ NULL, - /*.objects_end =*/ NULL, - /*.scratch =*/ { 0, 0, NULL, }, - /*.scratch_save =*/ { 0, 0, NULL, }, - }; + // FIXME + // *ctx = (struct ggml_context) { + // /*.mem_size =*/ mem_size, + // /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size), + // /*.mem_buffer_owned =*/ params.mem_buffer ? false : true, + // /*.no_alloc =*/ params.no_alloc, + // /*.no_alloc_save =*/ params.no_alloc, + // /*.n_objects =*/ 0, + // /*.objects_begin =*/ NULL, + // /*.objects_end =*/ NULL, + // /*.scratch =*/ { 0, 0, NULL, }, + // /*.scratch_save =*/ { 0, 0, NULL, }, + // }; GGML_ASSERT(ctx->mem_buffer != NULL); @@ -2402,7 +2440,7 @@ static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml // align to GGML_MEM_ALIGN size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN); - char * const mem_buffer = ctx->mem_buffer; + char * const mem_buffer = (char*)ctx->mem_buffer; struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end); if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) { @@ -2412,12 +2450,13 @@ static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml return NULL; } - *obj_new = (struct ggml_object) { - .offs = cur_end + GGML_OBJECT_SIZE, - .size = size_needed, - .next = NULL, - .type = type, - }; + // FIXME + // *obj_new = (struct ggml_object) { + // .offs = cur_end + GGML_OBJECT_SIZE, + // .size = size_needed, + // .next = NULL, + // .type = type, + // }; ggml_assert_aligned(mem_buffer + obj_new->offs); @@ -2475,7 +2514,7 @@ static struct ggml_tensor * ggml_new_tensor_impl( return NULL; } - data = (char * const) ctx->scratch.data + ctx->scratch.offs; + data = (void*)(((char *)ctx->scratch.data) + ctx->scratch.offs); ctx->scratch.offs += data_size; } else { @@ -2489,29 +2528,29 @@ static struct ggml_tensor * ggml_new_tensor_impl( // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs); - - *result = (struct ggml_tensor) { - /*.type =*/ type, - /*.backend =*/ GGML_BACKEND_CPU, - /*.buffer =*/ NULL, - /*.n_dims =*/ n_dims, - /*.ne =*/ { 1, 1, 1, 1 }, - /*.nb =*/ { 0, 0, 0, 0 }, - /*.op =*/ GGML_OP_NONE, - /*.op_params =*/ { 0 }, - /*.is_param =*/ false, - /*.grad =*/ NULL, - /*.src =*/ { NULL }, - /*.perf_runs =*/ 0, - /*.perf_cycles =*/ 0, - /*.perf_time_us =*/ 0, - /*.view_src =*/ view_src, - /*.view_offs =*/ view_offs, - /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data, - /*.name =*/ { 0 }, - /*.extra =*/ NULL, - /*.padding =*/ { 0 }, - }; + // FIXME + // *result = (struct ggml_tensor) { + // /*.type =*/ type, + // /*.backend =*/ GGML_BACKEND_CPU, + // /*.buffer =*/ NULL, + // /*.n_dims =*/ n_dims, + // /*.ne =*/ { 1, 1, 1, 1 }, + // /*.nb =*/ { 0, 0, 0, 0 }, + // /*.op =*/ GGML_OP_NONE, + // /*.op_params =*/ { 0 }, + // /*.is_param =*/ false, + // /*.grad =*/ NULL, + // /*.src =*/ { NULL }, + // /*.perf_runs =*/ 0, + // /*.perf_cycles =*/ 0, + // /*.perf_time_us =*/ 0, + // /*.view_src =*/ view_src, + // /*.view_offs =*/ view_offs, + // /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data, + // /*.name =*/ { 0 }, + // /*.extra =*/ NULL, + // /*.padding =*/ { 0 }, + // }; // TODO: this should not be needed as long as we don't rely on aligned SIMD loads //ggml_assert_aligned(result->data); @@ -2630,7 +2669,7 @@ struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { const int nc = tensor->ne[0]; const size_t n1 = tensor->nb[1]; - char * const data = tensor->data; + char * const data = (char*)tensor->data; switch (tensor->type) { case GGML_TYPE_I8: @@ -2682,7 +2721,7 @@ struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { const int nc = tensor->ne[0]; const size_t n1 = tensor->nb[1]; - char * const data = tensor->data; + char * const data = (char*)tensor->data; switch (tensor->type) { case GGML_TYPE_I8: @@ -2794,6 +2833,43 @@ int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { return 0.0f; } +void ggml_tensor_checksum(const struct ggml_tensor * tensor); +void ggml_tensor_checksum(const struct ggml_tensor * tensor) { + const int64_t ne = ggml_nelements(tensor) ; + float fmin=0; + float ffirst=0; + float fmax=0; + float fsum=0; + + for (int64_t j = 0; j < ne; ++j) { + float f = ggml_get_f32_1d(tensor, j); + if (j ==0) { + ffirst = f; + fmin = f; + fmax = f; + } + fsum += f; + if (f < fmin){ + fmin = f; + } + if (f >fmax){ + fmax = f; + } + } + + auto type_name = magic_enum::enum_name(tensor->type); +// color_name + fprintf(stderr, "JSON: { \"cnt\":%ld, \"first\":%f,\"max\":%f,\"min\":%f,\"sum\":%f, \"name\":\"%s\", \"type\":\"%s\"}\n", + ne, + ffirst, + fmax, + fmin, + fsum, + tensor->name, + std::string(type_name).c_str() + ); +} + void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { if (!ggml_is_contiguous(tensor)) { int64_t id[4] = { 0, 0, 0, 0 }; @@ -2911,17 +2987,30 @@ float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); } - case GGML_TYPE_F32: - { - GGML_ASSERT(tensor->nb[0] == sizeof(float)); - return ((float *)(tensor->data))[i]; - } - default: - { - GGML_ASSERT(false); - } - } + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q8_K: + case GGML_TYPE_F32: + { + //GGML_ASSERT(tensor->nb[0] == sizeof(float)); + return ((float *)(tensor->data))[i]; + } + + default: + { + GGML_ASSERT(false); + } + } return 0.0f; } @@ -3063,7 +3152,7 @@ struct ggml_tensor * ggml_view_tensor( struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) { struct ggml_object * obj = ctx->objects_begin; - char * const mem_buffer = ctx->mem_buffer; + char * const mem_buffer = (char*)ctx->mem_buffer; while (obj != NULL) { if (obj->type == GGML_OBJECT_TENSOR) { @@ -3080,7 +3169,7 @@ struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE); obj = obj->next; - char * const mem_buffer = ctx->mem_buffer; + char * const mem_buffer = (char*)ctx->mem_buffer; while (obj != NULL) { if (obj->type == GGML_OBJECT_TENSOR) { @@ -3096,7 +3185,7 @@ struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) { struct ggml_object * obj = ctx->objects_begin; - char * const mem_buffer = ctx->mem_buffer; + char * const mem_buffer = (char*)ctx->mem_buffer; while (obj != NULL) { if (obj->type == GGML_OBJECT_TENSOR) { @@ -3292,7 +3381,7 @@ static struct ggml_tensor * ggml_acc_impl( struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); - int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 }; + int32_t params[] = { (int32_t)nb1, (int32_t)nb2, (int32_t)nb3, (int32_t)offset, inplace ? 1 : 0 }; ggml_set_op_params(result, params, sizeof(params)); result->op = GGML_OP_ACC; @@ -4145,7 +4234,7 @@ static struct ggml_tensor * ggml_set_impl( // make a view of the destination struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); - int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 }; + int32_t params[] = { (int32_t)nb1,(int32_t) nb2, (int32_t)nb3, (int32_t)offset, inplace ? 1 : 0 }; ggml_set_op_params(result, params, sizeof(params)); result->op = GGML_OP_SET; @@ -5402,7 +5491,7 @@ struct ggml_tensor * ggml_pool_2d( }; struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne); - int32_t params[] = { op, k0, k1, s0, s1, p0, p1 }; + int32_t params[] = { op, k0, k1, s0, s1, (int32_t)p0, (int32_t)p1 }; ggml_set_op_params(result, params, sizeof(params)); result->op = GGML_OP_POOL_2D; @@ -6365,7 +6454,7 @@ static void ggml_compute_forward_dup_f16( GGML_ASSERT(false); // TODO: implement } } else { - //printf("%s: this is not optimal - fix me\n", __func__); + printf("%s: this is not optimal - fix me\n", __func__); if (dst->type == GGML_TYPE_F32) { size_t id = 0; @@ -6612,7 +6701,7 @@ static void ggml_compute_forward_dup_f32( GGML_ASSERT(false); // TODO: implement } } else { - //printf("%s: this is not optimal - fix me\n", __func__); + printf("%s: this is not optimal - fix me\n", __func__); if (dst->type == GGML_TYPE_F32) { size_t id = 0; @@ -8262,7 +8351,7 @@ static void ggml_compute_forward_repeat_back_f32( GGML_ASSERT(nb00 == sizeof(float)); if (ggml_is_contiguous(dst)) { - ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float*)dst->data, 0); } else { for (int k3 = 0; k3 < ne3; k3++) { for (int k2 = 0; k2 < ne2; k2++) { @@ -9390,6 +9479,7 @@ static void ggml_compute_forward_mul_mat( const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { + int64_t t0 = ggml_perf_time_us(); UNUSED(t0); @@ -9427,7 +9517,8 @@ static void ggml_compute_forward_mul_mat( // nb01 >= nb00 - src0 is not transposed // compute by src0 rows - + fprintf(stderr, "%s: params_type:%d src0:%p ->data %p src1:%p ->data %p\n", __func__, params->type, (const void*)src0, src0->data, (const void*)src1, src1->data); + #if defined(GGML_USE_CLBLAST) if (ggml_cl_can_mul_mat(src0, src1, dst)) { if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) { @@ -9484,7 +9575,7 @@ static void ggml_compute_forward_mul_mat( } } - //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); + printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); return; } @@ -9492,7 +9583,7 @@ static void ggml_compute_forward_mul_mat( if (params->type == GGML_TASK_INIT) { if (src1->type != vec_dot_type) { - char * wdata = params->wdata; + char * wdata = (char*)params->wdata; const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type); for (int64_t i13 = 0; i13 < ne13; ++i13) { @@ -9518,7 +9609,7 @@ static void ggml_compute_forward_mul_mat( const int64_t nr0 = ne01; // src0 rows const int64_t nr1 = ne11*ne12*ne13; // src1 rows - //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1); + printf("nr0 = %ld, nr1 = %ld\n", nr0, nr1); // distribute the thread work across the inner or outer loop based on which one is larger @@ -9537,7 +9628,7 @@ static void ggml_compute_forward_mul_mat( const int64_t ir110 = dr1*ith1; const int64_t ir111 = MIN(ir110 + dr1, nr1); - //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111); + printf("ir010 = %6ld, ir011 = %6ld, ir110 = %6ld, ir111 = %6ld\n", ir010, ir011, ir110, ir111); // threads with no work simply yield (not sure if it helps) if (ir010 >= ir011 || ir110 >= ir111) { @@ -9646,7 +9737,7 @@ static void ggml_compute_forward_out_prod_f32( return; } #endif - ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float*)dst->data, 0); return; } @@ -9829,7 +9920,7 @@ static void ggml_compute_forward_out_prod_q_f32( // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (params->type == GGML_TASK_INIT) { - ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float*)dst->data, 0); return; } @@ -11843,7 +11934,7 @@ static void ggml_compute_forward_pool_1d( struct ggml_tensor * dst) { const int32_t * opts = (const int32_t *)dst->op_params; - enum ggml_op_pool op = opts[0]; + enum ggml_op_pool op = (ggml_op_pool)opts[0]; const int k0 = opts[1]; const int s0 = opts[2]; const int p0 = opts[3]; @@ -11867,7 +11958,7 @@ static void ggml_compute_forward_pool_2d( } const int32_t * opts = (const int32_t *)dst->op_params; - enum ggml_op_pool op = opts[0]; + enum ggml_op_pool op = (ggml_op_pool)opts[0]; const int k0 = opts[1]; const int k1 = opts[2]; const int s0 = opts[3]; @@ -13696,6 +13787,105 @@ static void ggml_compute_forward_cross_entropy_loss_back( ///////////////////////////////// +/* const char * ggml_op_name_table [] = { */ +/* "GGML_OP_NONE", */ +/* "GGML_OP_DUP", */ +/* "GGML_OP_ADD", */ +/* "GGML_OP_ADD1", */ +/* "GGML_OP_ACC", */ +/* "GGML_OP_SUB", */ +/* "GGML_OP_MUL", */ +/* "GGML_OP_DIV", */ +/* "GGML_OP_SQR", */ +/* "GGML_OP_SQRT", */ +/* "GGML_OP_LOG", */ +/* "GGML_OP_SUM", */ +/* "GGML_OP_SUM_ROWS", */ +/* "GGML_OP_MEAN", */ +/* "GGML_OP_ARGMAX", */ +/* "GGML_OP_REPEAT", */ +/* "GGML_OP_REPEAT_BACK", */ +/* "GGML_OP_CONCAT", */ +/* "GGML_OP_SILU_BACK", */ +/* "GGML_OP_NORM", */ +/* "GGML_OP_RMS_NORM", */ +/* "GGML_OP_RMS_NORM_BACK", */ +/* "GGML_OP_GROUP_NORM", */ +/* "GGML_OP_MUL_MAT", */ +/* "GGML_OP_OUT_PROD", */ +/* "GGML_OP_SCALE", */ +/* "GGML_OP_SET", */ +/* "GGML_OP_CPY", */ +/* "GGML_OP_CONT", */ +/* "GGML_OP_RESHAPE", */ +/* "GGML_OP_VIEW", */ +/* "GGML_OP_PERMUTE", */ +/* "GGML_OP_TRANSPOSE", */ +/* "GGML_OP_GET_ROWS", */ +/* "GGML_OP_GET_ROWS_BACK", */ +/* "GGML_OP_DIAG", */ +/* "GGML_OP_DIAG_MASK_INF", */ +/* "GGML_OP_DIAG_MASK_ZERO", */ +/* "GGML_OP_SOFT_MAX", */ +/* "GGML_OP_SOFT_MAX_BACK", */ +/* "GGML_OP_ROPE", */ +/* "GGML_OP_ROPE_BACK", */ +/* "GGML_OP_ALIBI", */ +/* "GGML_OP_CLAMP", */ +/* "GGML_OP_CONV_TRANSPOSE_1D", */ +/* "GGML_OP_IM2COL", */ +/* "GGML_OP_CONV_TRANSPOSE_2D", */ +/* "GGML_OP_POOL_1D", */ +/* "GGML_OP_POOL_2D", */ +/* "GGML_OP_UPSCALE", */ +/* "GGML_OP_FLASH_ATTN", */ +/* "GGML_OP_FLASH_FF", */ +/* "GGML_OP_FLASH_ATTN_BACK", */ +/* "GGML_OP_WIN_PART", */ +/* "GGML_OP_WIN_UNPART", */ +/* "GGML_OP_GET_REL_POS", */ +/* "GGML_OP_ADD_REL_POS", */ +/* "GGML_OP_UNARY", */ +/* "GGML_OP_MAP_UNARY", */ +/* "GGML_OP_MAP_BINARY", */ +/* "GGML_OP_MAP_CUSTOM1_F32", */ +/* "GGML_OP_MAP_CUSTOM2_F32", */ +/* "GGML_OP_MAP_CUSTOM3_F32", */ +/* "GGML_OP_MAP_CUSTOM1", */ +/* "GGML_OP_MAP_CUSTOM2", */ +/* "GGML_OP_MAP_CUSTOM3", */ +/* "GGML_OP_CROSS_ENTROPY_LOSS", */ +/* "GGML_OP_CROSS_ENTROPY_LOSS_BACK", */ +/* "GGML_OP_COUNT", */ +/* }; */ + + /* enum ggml_unary_op { */ + /* GGML_UNARY_OP_ABS, */ + /* GGML_UNARY_OP_SGN, */ + /* GGML_UNARY_OP_NEG, */ + /* GGML_UNARY_OP_STEP, */ + /* GGML_UNARY_OP_TANH, */ + /* GGML_UNARY_OP_ELU, */ + /* GGML_UNARY_OP_RELU, */ + /* GGML_UNARY_OP_GELU, */ + /* GGML_UNARY_OP_GELU_QUICK, */ + /* GGML_UNARY_OP_SILU, */ + /* GGML_UNARY_OP_LEAKY */ + /* }; */ + + /* enum ggml_object_type { */ + /* GGML_OBJECT_TENSOR, */ + /* GGML_OBJECT_GRAPH, */ + /* GGML_OBJECT_WORK_BUFFER */ + /* }; */ + + /* enum ggml_log_level { */ + /* GGML_LOG_LEVEL_ERROR = 2, */ + /* GGML_LOG_LEVEL_WARN = 3, */ + /* GGML_LOG_LEVEL_INFO = 4 */ + /* }; */ + + static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { GGML_ASSERT(params); @@ -13703,10 +13893,100 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm return; } + // float fmin1=0; + // // float ffirst1=0; + // float fmax1=0; + // float fsum1=0; + + // float fmin0=0; + // float ffirst0=0; + // float fmax0=0; + // float fsum0=0; + + // float fmin2=0; + // float ffirst2=0; + // float fmax2=0; + // float fsum2=0; + + // int64_t elem_src = ggml_nelements(tensor->src[0]); + // int64_t elem_src1 = 0; //ggml_nelements(tensor->src[1]); + + // if (tensor->src[0]) { + // const size_t size = ggml_nbytes(tensor->src[0])/sizeof(float); + // for (size_t i = 0; i src[0]->data))+i); + // } + // } + + // if (tensor->src[1]) { + // elem_src1 = ggml_nelements(tensor->src[1]); + // const size_t size = ggml_nbytes(tensor->src[1])/sizeof(float); + // for (size_t i = 0; i src[1]->data))+i); + // if (i ==0) { + // ffirst1 = f; + // fmin1 = f; + // fmax1 = f; + // } + // fsum1 += f; + // if (f < fmin1){ + // fmin1 = f; + // } + // if (f >fmax1){ + // fmax1 = f; + // } + // } + //} + #ifdef GGML_USE_CUBLAS bool skip_cpu = ggml_cuda_compute_forward(params, tensor); if (skip_cpu) { - return; + + if (tensor->src[1]) { + ggml_tensor_checksum(tensor->src[0]); + ggml_tensor_checksum(tensor->src[1]); + ggml_tensor_checksum(tensor); + + /* fprintf(stderr, "JSON:{\"bop\":\"%s\",\"src\":\"%s\",\"src2\":\"%s\",\"cnt1\":%ld,\"first1\":%f,\"max1\":%f,\"min1\":%f,\"sum1\":%f,\"cnt2\":%ld,\"first2\":%f,\"max2\":%f,\"min2\":%f,\"sum2\":%f,\"first2\":%f,\"max2\":%f,\"min2\":%f,\"sum2\":%f,\"dst\":\"%s\"}\n", */ + /* ggml_op_name_table[tensor->op], */ + /* tensor->src[0]->name, */ + /* tensor->src[1]->name, */ + /* elem_src, */ + /* ffirst0, */ + /* fmax0, */ + /* fmin0, */ + /* fsum0, */ + + /* elem_src1, */ + /* ffirst1, */ + /* fmax1, */ + /* fmin1, */ + /* fsum1, */ + + /* ffirst2, */ + /* fmax2, */ + /* fmin2, */ + /* fsum2, */ + + /* tensor->name); */ + } else { + ggml_tensor_checksum(tensor->src[0]); + ggml_tensor_checksum(tensor); + /* fprintf(stderr, "JSON: { \"uop\":%d, \"src\":\"%s\", \"cnt1\":%ld, \"first1\":%f,\"max1\":%f,\"min1\":%f,\"sum1\":%f, \"first2\":%f,\"max2\":%f,\"min2\":%f,\"sum2\":%f, \"dst\":\"%s\"}\n", */ + /* tensor->op, */ + /* tensor->src[0]->name, */ + /* elem_src, */ + /* ffirst0, */ + /* fmax0, */ + /* fmin0, */ + /* fsum0, */ + /* ffirst2, */ + /* fmax2, */ + /* fmin2, */ + /* fsum2, */ + /* tensor->name); */ + } + return; } GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU); GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU); @@ -14016,6 +14296,82 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm GGML_ASSERT(false); } break; } + + // now report + // int64_t elem_dst = ggml_nelements(tensor); + + // const size_t size = ggml_nbytes(tensor)/sizeof(float); + + // for (size_t i = 0; i data))+i); + // if (i ==0) { + // ffirst2 = f; + // fmin2 = f; + // fmax2 = f; + // } + // fsum2 += f; + // if (f < fmin2){ + // fmin2 = f; + // } + // if (f >fmax2){ + // fmax2 = f; + // } + // } + + if (tensor->src[1]) { + ggml_tensor_checksum(tensor->src[0]); + ggml_tensor_checksum(tensor->src[1]); + ggml_tensor_checksum(tensor); + + /* fprintf(stderr, "JSON:{\"bop\":\"%s\",\"src\":\"%s\",\"src2\":\"%s\",\"cnt1\":%ld,\"first1\":%f,\"max1\":%f,\"min1\":%f,\"sum1\":%f,\"cnt2\":%ld,\"first2\":%f,\"max2\":%f,\"min2\":%f,\"sum2\":%f,\"first2\":%f,\"max2\":%f,\"min2\":%f,\"sum2\":%f,\"cnt2\":%ld,\"dst\":\"%s\"}\n", */ + /* ggml_op_name_table[tensor->op], */ + /* tensor->src[0]->name, */ + /* tensor->src[1]->name, */ + /* elem_src, */ + /* ffirst0, */ + /* fmax0, */ + /* fmin0, */ + /* fsum0, */ + + /* elem_src1, */ + /* ffirst1, */ + /* fmax1, */ + /* fmin1, */ + /* fsum1, */ + + /* ffirst2, */ + /* fmax2, */ + /* fmin2, */ + /* fsum2, */ + + /* elem_dst, */ + /* tensor->name); */ + + + } else { + ggml_tensor_checksum(tensor->src[0]); + ggml_tensor_checksum(tensor); + + /* fprintf(stderr, "JSON: { \"uop\":%d, \"src\":\"%s\", \"cnt1\":%ld, \"first1\":%f,\"max1\":%f,\"min1\":%f,\"sum1\":%f, \"first2\":%f,\"max2\":%f,\"min2\":%f,\"sum2\":%f,\"cnt2\":%ld,\"dst\":\"%s\"}\n", */ + /* tensor->op, */ + /* tensor->src[0]->name, */ + /* // src */ + /* elem_src, */ + /* ffirst0, */ + /* fmax0, */ + /* fmin0, */ + /* fsum0, */ + + /* // dest */ + /* ffirst2, */ + /* fmax2, */ + /* fmin2, */ + /* fsum2, */ + /* elem_dst, */ + /* tensor->name); */ + + } + } //////////////////////////////////////////////////////////////////////////////// @@ -14098,7 +14454,7 @@ static struct ggml_hash_set ggml_hash_set_new(size_t size) { size = ggml_hash_size(size); struct ggml_hash_set result; result.size = size; - result.keys = malloc(sizeof(struct ggml_tensor *) * size); + result.keys = (ggml_tensor **)malloc(sizeof(struct ggml_tensor *) * size); memset(result.keys, 0, sizeof(struct ggml_tensor *) * size); return result; } @@ -14113,9 +14469,9 @@ struct hash_map { }; static struct hash_map * ggml_new_hash_map(size_t size) { - struct hash_map * result = malloc(sizeof(struct hash_map)); + struct hash_map * result = (hash_map *)malloc(sizeof(struct hash_map)); result->set = ggml_hash_set_new(size); - result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size); + result->vals = (ggml_tensor **)malloc(sizeof(struct ggml_tensor *) * result->set.size); memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size); return result; } @@ -15235,20 +15591,20 @@ struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t siz (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph)); memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *)); - - *cgraph = (struct ggml_cgraph) { - /*.size =*/ size, - /*.n_nodes =*/ 0, - /*.n_leafs =*/ 0, - /*.nodes =*/ nodes_ptr, - /*.grads =*/ grads_ptr, - /*.leafs =*/ leafs_ptr, - /*.hash_table =*/ { hash_size, hash_keys_ptr }, - /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, - /*.perf_runs =*/ 0, - /*.perf_cycles =*/ 0, - /*.perf_time_us =*/ 0, - }; + // FIXME + // *cgraph = (struct ggml_cgraph) { + // /*.size =*/ size, + // /*.n_nodes =*/ 0, + // /*.n_leafs =*/ 0, + // /*.nodes =*/ nodes_ptr, + // /*.grads =*/ grads_ptr, + // /*.leafs =*/ leafs_ptr, + // /*.hash_table =*/ { hash_size, hash_keys_ptr }, + // /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, + // /*.perf_runs =*/ 0, + // /*.perf_cycles =*/ 0, + // /*.perf_time_us =*/ 0, + // }; return cgraph; } @@ -15262,19 +15618,19 @@ struct ggml_cgraph * ggml_graph_view(struct ggml_context * ctx, struct ggml_cgra struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size); struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs); - *cgraph = (struct ggml_cgraph) { - /*.size =*/ 0, - /*.n_nodes =*/ i1 - i0, - /*.n_leafs =*/ 0, - /*.nodes =*/ cgraph0->nodes + i0, - /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL, - /*.leafs =*/ NULL, - /*.hash_table =*/ { 0, NULL }, - /*.order =*/ cgraph0->order, - /*.perf_runs =*/ 0, - /*.perf_cycles =*/ 0, - /*.perf_time_us =*/ 0, - }; + // *cgraph = (struct ggml_cgraph) { + // /*.size =*/ 0, + // /*.n_nodes =*/ i1 - i0, + // /*.n_leafs =*/ 0, + // /*.nodes =*/ cgraph0->nodes + i0, + // /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL, + // /*.leafs =*/ NULL, + // /*.hash_table =*/ { 0, NULL }, + // /*.order =*/ cgraph0->order, + // /*.perf_runs =*/ 0, + // /*.perf_cycles =*/ 0, + // /*.perf_time_us =*/ 0, + // }; return cgraph; } @@ -16039,11 +16395,12 @@ int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { // create thread pool if (n_threads > 1) { for (int j = 1; j < n_threads; ++j) { - workers[j] = (struct ggml_compute_state) { - .thrd = 0, - .ith = j, - .shared = &state_shared, - }; + // FIXME + // workers[j] = (struct ggml_compute_state) { + // .thrd = 0, + // .ith = j, + // .shared = &state_shared, + // }; const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]); GGML_ASSERT(rc == 0); @@ -16363,11 +16720,12 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context * { const size_t overhead = 1*ggml_tensor_overhead(); - struct ggml_init_params params = { - .mem_size = fsize + overhead, - .mem_buffer = NULL, - .no_alloc = false, - }; + // FIXME + struct ggml_init_params params;// = { + // .mem_size = fsize + overhead, + // .mem_buffer = NULL, + // .no_alloc = false, + // }; *ctx_data = ggml_init(params); @@ -16419,11 +16777,12 @@ struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context * { const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false); - struct ggml_init_params params = { - .mem_size = size_eval + overhead, - .mem_buffer = NULL, - .no_alloc = true, - }; + // FIXME + struct ggml_init_params params;// = { + // .mem_size = size_eval + overhead, + // .mem_buffer = NULL, + // .no_alloc = true, + // }; *ctx_eval = ggml_init(params); @@ -16631,7 +16990,7 @@ void ggml_graph_print(const struct ggml_cgraph * cgraph) { continue; } - GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0); + GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name((ggml_op)i), (double) perf_total_per_op_us[i] / 1000.0); } GGML_PRINT("========================================\n"); @@ -16903,11 +17262,11 @@ static enum ggml_opt_result ggml_opt_adam( const int n_accum = MAX(1, params.n_gradient_accumulation); const float accum_norm = 1.0f / (float) n_accum; - float * g = opt->adam.g->data; // gradients - float * m = opt->adam.m->data; // first moment - float * v = opt->adam.v->data; // second moment + float * g = (float*)opt->adam.g->data; // gradients + float * m = (float*)opt->adam.m->data; // first moment + float * v = (float*)opt->adam.v->data; // second moment - float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values + float * pf = params.past > 0 ? (float *)opt->adam.pf->data : NULL; // past function values struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); @@ -17175,7 +17534,7 @@ static enum ggml_opt_result linesearch_backtracking( } else { // Armijo condition is satisfied if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) { - return count; + return (ggml_opt_result)count; } ggml_vec_dot_f32(nx, &dg, g, d); @@ -17193,7 +17552,7 @@ static enum ggml_opt_result linesearch_backtracking( width = dec; } else { // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) - return count; + return (ggml_opt_result)count; } } } @@ -17258,11 +17617,11 @@ static enum ggml_opt_result ggml_opt_lbfgs( struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size); cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; - float * x = opt->lbfgs.x->data; // current parameters - float * xp = opt->lbfgs.xp->data; // previous parameters - float * g = opt->lbfgs.g->data; // current gradient - float * gp = opt->lbfgs.gp->data; // previous gradient - float * d = opt->lbfgs.d->data; // search direction + float * x = (float*)opt->lbfgs.x->data; // current parameters + float * xp = (float*)opt->lbfgs.xp->data; // previous parameters + float * g = (float*)opt->lbfgs.g->data; // current gradient + float * gp = (float*)opt->lbfgs.gp->data; // previous gradient + float * d = (float*)opt->lbfgs.d->data; // search direction float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values @@ -17277,10 +17636,10 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_opt_get_params(np, ps, x); // the L-BFGS memory - float * lm_alpha = opt->lbfgs.lmal->data; - float * lm_ys = opt->lbfgs.lmys->data; - float * lm_s = opt->lbfgs.lms->data; - float * lm_y = opt->lbfgs.lmy->data; + float * lm_alpha = (float*)opt->lbfgs.lmal->data; + float * lm_ys = (float*)opt->lbfgs.lmys->data; + float * lm_s = (float*)opt->lbfgs.lms->data; + float * lm_y = (float*)opt->lbfgs.lmy->data; bool cancel = false; @@ -17377,7 +17736,7 @@ static enum ggml_opt_result ggml_opt_lbfgs( ggml_vec_cpy_f32(nx, x, xp); ggml_vec_cpy_f32(nx, g, gp); - return ls; + return (ggml_opt_result)ls; } opt->loss_after = fx; @@ -17488,66 +17847,70 @@ struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { switch (type) { case GGML_OPT_ADAM: { - result = (struct ggml_opt_params) { - .type = GGML_OPT_ADAM, - .graph_size = GGML_DEFAULT_GRAPH_SIZE, - .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ? - .past = 0, - .delta = 1e-5f, - - .max_no_improvement = 100, - - .print_forward_graph = true, - .print_backward_graph = true, - - .n_gradient_accumulation = 1, - - .adam = { - .n_iter = 10000, - .sched = 1.000f, - .decay = 0.0f, - .decay_min_ndim = 2, - .alpha = 0.001f, - .beta1 = 0.9f, - .beta2 = 0.999f, - .eps = 1e-8f, - .eps_f = 1e-5f, - .eps_g = 1e-3f, - .gclip = 0.0f, - }, - }; + // FIXME + // result = (struct ggml_opt_params) { + // .type = GGML_OPT_ADAM, + // .graph_size = GGML_DEFAULT_GRAPH_SIZE, + // .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ? + // .past = 0, + // .delta = 1e-5f, + + // .max_no_improvement = 100, + + // .print_forward_graph = true, + // .print_backward_graph = true, + + // .n_gradient_accumulation = 1, + + // .adam = { + // .n_iter = 10000, + // .sched = 1.000f, + // .decay = 0.0f, + // .decay_min_ndim = 2, + // .alpha = 0.001f, + // .beta1 = 0.9f, + // .beta2 = 0.999f, + // .eps = 1e-8f, + // .eps_f = 1e-5f, + // .eps_g = 1e-3f, + // .gclip = 0.0f, + // }, + // }; } break; case GGML_OPT_LBFGS: - { - result = (struct ggml_opt_params) { - .type = GGML_OPT_LBFGS, - .graph_size = GGML_DEFAULT_GRAPH_SIZE, - .n_threads = 1, - .past = 0, - .delta = 1e-5f, - - .max_no_improvement = 0, - - .print_forward_graph = true, - .print_backward_graph = true, - - .n_gradient_accumulation = 1, - - .lbfgs = { - .m = 6, - .n_iter = 100, - .max_linesearch = 20, - - .eps = 1e-5f, - .ftol = 1e-4f, - .wolfe = 0.9f, - .min_step = 1e-20f, - .max_step = 1e+20f, - - .linesearch = GGML_LINESEARCH_DEFAULT, - }, - }; - } break; + break; + //{ + // TODO FIXME + // result = (struct ggml_opt_params) { + // .type = GGML_OPT_LBFGS, + // .graph_size = GGML_DEFAULT_GRAPH_SIZE, + // .n_threads = 1, + // .past = 0, + // .delta = 1e-5f, + + // .max_no_improvement = 0, + + // .print_forward_graph = true, + // .print_backward_graph = true, + + // .n_gradient_accumulation = 1, + + // .lbfgs = { + // .m = 6, + // .n_iter = 100, + // .max_linesearch = 20, + + // .eps = 1e-5f, + // .ftol = 1e-4f, + // .wolfe = 0.9f, + // .min_step = 1e-20f, + // .max_step = 1e+20f, + + // .linesearch = GGML_LINESEARCH_DEFAULT, + + // } + //}; + //} break; } return result; @@ -17632,11 +17995,11 @@ enum ggml_opt_result ggml_opt( struct ggml_tensor * f) { bool free_ctx = false; if (ctx == NULL) { - struct ggml_init_params params_ctx = { - .mem_size = 16*1024*1024, - .mem_buffer = NULL, - .no_alloc = false, - }; + struct ggml_init_params params_ctx;// = { + // .mem_size = 16*1024*1024, + // .mem_buffer = NULL, + // .no_alloc = false, + // }; ctx = ggml_init(params_ctx); if (ctx == NULL) { @@ -17718,7 +18081,7 @@ size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * const int nb = k / QK4_0; for (int b = 0; b < n; b += k) { - block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0; + block_q4_0 * __restrict__ y = (block_q4_0 *) dst + b/QK4_0; quantize_row_q4_0_reference(src + b, y, k); @@ -17741,7 +18104,7 @@ size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * const int nb = k / QK4_1; for (int b = 0; b < n; b += k) { - block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1; + block_q4_1 * __restrict__ y = (block_q4_1 *) dst + b/QK4_1; quantize_row_q4_1_reference(src + b, y, k); @@ -17764,7 +18127,7 @@ size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * const int nb = k / QK5_0; for (int b = 0; b < n; b += k) { - block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0; + block_q5_0 * __restrict__ y = (block_q5_0 *)dst + b/QK5_0; quantize_row_q5_0_reference(src + b, y, k); @@ -17794,7 +18157,7 @@ size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * const int nb = k / QK5_1; for (int b = 0; b < n; b += k) { - block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1; + block_q5_1 * __restrict__ y = (block_q5_1 *)dst + b/QK5_1; quantize_row_q5_1_reference(src + b, y, k); @@ -17824,7 +18187,7 @@ size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * const int nb = k / QK8_0; for (int b = 0; b < n; b += k) { - block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0; + block_q8_0 * __restrict__ y = (block_q8_0 *)dst + b/QK8_0; quantize_row_q8_0_reference(src + b, y, k); @@ -17929,36 +18292,36 @@ struct gguf_str { }; static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = { - [GGUF_TYPE_UINT8] = sizeof(uint8_t), - [GGUF_TYPE_INT8] = sizeof(int8_t), - [GGUF_TYPE_UINT16] = sizeof(uint16_t), - [GGUF_TYPE_INT16] = sizeof(int16_t), - [GGUF_TYPE_UINT32] = sizeof(uint32_t), - [GGUF_TYPE_INT32] = sizeof(int32_t), - [GGUF_TYPE_FLOAT32] = sizeof(float), - [GGUF_TYPE_BOOL] = sizeof(bool), - [GGUF_TYPE_STRING] = sizeof(struct gguf_str), - [GGUF_TYPE_UINT64] = sizeof(uint64_t), - [GGUF_TYPE_INT64] = sizeof(int64_t), - [GGUF_TYPE_FLOAT64] = sizeof(double), - [GGUF_TYPE_ARRAY] = 0, // undefined + // [GGUF_TYPE_UINT8] = sizeof(uint8_t), + // [GGUF_TYPE_INT8] = sizeof(int8_t), + // [GGUF_TYPE_UINT16] = sizeof(uint16_t), + // [GGUF_TYPE_INT16] = sizeof(int16_t), + // [GGUF_TYPE_UINT32] = sizeof(uint32_t), + // [GGUF_TYPE_INT32] = sizeof(int32_t), + // [GGUF_TYPE_FLOAT32] = sizeof(float), + // [GGUF_TYPE_BOOL] = sizeof(bool), + // [GGUF_TYPE_STRING] = sizeof(struct gguf_str), + // [GGUF_TYPE_UINT64] = sizeof(uint64_t), + // [GGUF_TYPE_INT64] = sizeof(int64_t), + // [GGUF_TYPE_FLOAT64] = sizeof(double), + // [GGUF_TYPE_ARRAY] = 0, // undefined }; static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = { - [GGUF_TYPE_UINT8] = "u8", - [GGUF_TYPE_INT8] = "i8", - [GGUF_TYPE_UINT16] = "u16", - [GGUF_TYPE_INT16] = "i16", - [GGUF_TYPE_UINT32] = "u32", - [GGUF_TYPE_INT32] = "i32", - [GGUF_TYPE_FLOAT32] = "f32", - [GGUF_TYPE_BOOL] = "bool", - [GGUF_TYPE_STRING] = "str", - [GGUF_TYPE_ARRAY] = "arr", - [GGUF_TYPE_UINT64] = "u64", - [GGUF_TYPE_INT64] = "i64", - [GGUF_TYPE_FLOAT64] = "f64", + // [GGUF_TYPE_UINT8] = "u8", + // [GGUF_TYPE_INT8] = "i8", + // [GGUF_TYPE_UINT16] = "u16", + // [GGUF_TYPE_INT16] = "i16", + // [GGUF_TYPE_UINT32] = "u32", + // [GGUF_TYPE_INT32] = "i32", + // [GGUF_TYPE_FLOAT32] = "f32", + // [GGUF_TYPE_BOOL] = "bool", + // [GGUF_TYPE_STRING] = "str", + // [GGUF_TYPE_ARRAY] = "arr", + // [GGUF_TYPE_UINT64] = "u64", + // [GGUF_TYPE_INT64] = "i64", + // [GGUF_TYPE_FLOAT64] = "f64", }; static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); @@ -18040,14 +18403,14 @@ static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) { bool ok = true; - ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1); + ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = (char*)calloc(p->n + 1, 1); ok = ok && gguf_fread_el(file, p->data, p->n, offset); return ok; } struct gguf_context * gguf_init_empty(void) { - struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); + struct gguf_context * ctx = (gguf_context*)GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic)); ctx->header.version = GGUF_VERSION; @@ -18092,7 +18455,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p bool ok = true; - struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); + struct gguf_context * ctx = (gguf_context*)GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); // read the header { @@ -18124,7 +18487,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p // read the kv pairs { - ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv)); + ctx->kv = (gguf_kv*)malloc(ctx->header.n_kv * sizeof(struct gguf_kv)); for (uint64_t i = 0; i < ctx->header.n_kv; ++i) { struct gguf_kv * kv = &ctx->kv[i]; @@ -18199,7 +18562,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p // read the tensor infos { - ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info)); + ctx->infos = (gguf_tensor_info*)malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info)); for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { struct gguf_tensor_info * info = &ctx->infos[i]; @@ -18283,11 +18646,13 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p (ctx->header.n_tensors )*ggml_tensor_overhead() : (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size; - struct ggml_init_params pdata = { - .mem_size = mem_size, - .mem_buffer = NULL, - .no_alloc = params.no_alloc, - }; + // FIXME + struct ggml_init_params pdata; + // = { + // .mem_size = mem_size, + // .mem_buffer = NULL, + // .no_alloc = params.no_alloc, + // }; *params.ctx = ggml_init(pdata); @@ -18319,10 +18684,10 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p // create the tensors for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { const int64_t ne[GGML_MAX_DIMS] = { - ctx->infos[i].ne[0], - ctx->infos[i].ne[1], - ctx->infos[i].ne[2], - ctx->infos[i].ne[3], + (int64_t)ctx->infos[i].ne[0],// FIXME narrowing + (int64_t)ctx->infos[i].ne[1], + (int64_t)ctx->infos[i].ne[2], + (int64_t)ctx->infos[i].ne[3], }; struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne); @@ -18603,7 +18968,7 @@ static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) { const int n_kv = gguf_get_n_kv(ctx); - ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv)); + ctx->kv = (gguf_kv*)realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv)); ctx->kv[n_kv].key.n = strlen(key); ctx->kv[n_kv].key.data = strdup(key); ctx->header.n_kv++; @@ -18739,7 +19104,7 @@ void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) { case GGUF_TYPE_ARRAY: { if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) { - const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *)); + const char ** data = (const char **)malloc(src->kv[i].value.arr.n*sizeof(char *)); for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) { data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data; } @@ -18760,7 +19125,7 @@ void gguf_add_tensor( struct gguf_context * ctx, const struct ggml_tensor * tensor) { const int idx = ctx->header.n_tensors; - ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info)); + ctx->infos = (gguf_tensor_info*)realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info)); ctx->infos[idx].name.n = strlen(tensor->name); ctx->infos[idx].name.data = strdup(tensor->name); diff --git a/ggml.h b/ggml.h index f2fce0f22d357..6d625fd677356 100644 --- a/ggml.h +++ b/ggml.h @@ -571,6 +571,12 @@ extern "C" { size_t offs; size_t size; void * data; + + ggml_scratch() + : offs(0), + size(0), + data(0) + {} }; struct ggml_init_params { diff --git a/llama.cpp b/llama.cpp index c2ad048699472..c51829c4589e7 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1494,6 +1494,7 @@ static bool llama_kv_cache_init( ggml_type wtype, uint32_t n_ctx, int n_gpu_layers) { + fprintf(stderr, "GPULAYERS '%d'\n", n_gpu_layers); const uint32_t n_embd = hparams.n_embd_gqa(); const uint32_t n_layer = hparams.n_layer; @@ -1531,6 +1532,7 @@ static bool llama_kv_cache_init( (void) n_gpu_layers; #ifdef GGML_USE_CUBLAS + fprintf(stderr, "USE CUBLAS\n"); if (ggml_cublas_loaded()) { size_t vram_kv_cache = 0; @@ -1548,6 +1550,8 @@ static bool llama_kv_cache_init( LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MiB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); } } + #else + fprintf(stderr, "NO USE CUBLAS\n"); #endif return true; @@ -2065,6 +2069,7 @@ struct llama_model_loader { break; #ifdef GGML_USE_CUBLAS case GGML_BACKEND_GPU: + case GGML_BACKEND_GPU_SPLIT: // old code: //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor); @@ -2741,9 +2746,11 @@ static void llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights00 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { + fprintf(stderr, "vram_weights01 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output); } } @@ -2774,6 +2781,7 @@ static void llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights03 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + @@ -2807,9 +2815,11 @@ static void llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights04 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { + fprintf(stderr, "vram_weights05 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output); } } @@ -2840,6 +2850,7 @@ static void llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights06 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) + @@ -2878,10 +2889,13 @@ static void llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights07 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm); + fprintf(stderr, "vram_weights08 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm_b); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { + fprintf(stderr, "vram_weights09 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output); } } @@ -2906,7 +2920,9 @@ static void llm_load_tensors( layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend); if (backend == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights10 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(layer.attn_norm_2); + fprintf(stderr, "vram_weights11 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(layer.attn_norm_2_b); } } @@ -2918,6 +2934,7 @@ static void llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights12 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) + @@ -2955,10 +2972,12 @@ static void llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights13 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm); vram_weights += ggml_nbytes(model.output_norm_b); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { + fprintf(stderr, "vram_weights14 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output); } } @@ -2994,6 +3013,7 @@ static void llm_load_tensors( layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend); if (backend == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights15 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) + @@ -3039,10 +3059,13 @@ static void llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights16 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm); + fprintf(stderr, "vram_weights17 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm_b); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { + fprintf(stderr, "vram_weights18 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output); } } @@ -3105,10 +3128,13 @@ static void llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights19 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm); + fprintf(stderr, "vram_weights20 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm_b); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { + fprintf(stderr, "vram_weights21 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output); } } @@ -3144,6 +3170,7 @@ static void llm_load_tensors( layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend); if (backend == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights22 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) + ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) + @@ -3182,9 +3209,11 @@ static void llm_load_tensors( model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); if (backend_norm == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights23 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output_norm); } if (backend_output == GGML_BACKEND_GPU_SPLIT) { + fprintf(stderr, "vram_weights24 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(model.output); } } @@ -3211,6 +3240,7 @@ static void llm_load_tensors( layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); if (backend == GGML_BACKEND_GPU) { + fprintf(stderr, "vram_weights25 '%ld'\n", vram_weights); vram_weights += ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wqkv) + @@ -5588,8 +5618,8 @@ static int llama_decode_internal( // plot the computation graph in dot format (for debugging purposes) //if (n_past%100 == 0) { - // ggml_graph_dump_dot(gf, NULL, "llama.dot"); - //} + //ggml_graph_dump_dot(gf, NULL, "llama.dot"); + //} // extract logits // TODO: do not compute and extract logits if only embeddings are needed