diff --git a/ggml-alloc.c b/ggml-alloc.c index a27dd54b0eb06..5e730aa9a9d96 100644 --- a/ggml-alloc.c +++ b/ggml-alloc.c @@ -779,10 +779,21 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte if (nbytes == 0) { // all the tensors in the context are already allocated +#ifndef NDEBUG + fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__); +#endif return NULL; } ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, nbytes); + if (buffer == NULL) { + // failed to allocate buffer +#ifndef NDEBUG + fprintf(stderr, "%s: failed to allocate buffer\n", __func__); +#endif + return NULL; + } + ggml_tallocr_t tallocr = ggml_tallocr_new_from_buffer(buffer); for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) { diff --git a/ggml-backend-impl.h b/ggml-backend-impl.h index 05859935a3c2f..9a8277e15668e 100644 --- a/ggml-backend-impl.h +++ b/ggml-backend-impl.h @@ -51,6 +51,7 @@ extern "C" { ggml_backend_buffer_type_t buft; ggml_backend_buffer_context_t context; size_t size; + enum ggml_backend_buffer_usage usage; }; ggml_backend_buffer_t ggml_backend_buffer_init( diff --git a/ggml-backend.c b/ggml-backend.c index 2c3752067515f..7d661cc700750 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -58,6 +58,7 @@ ggml_backend_buffer_t ggml_backend_buffer_init( /* .buft = */ buft, /* .context = */ context, /* .size = */ size, + /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY }; return buffer; @@ -109,6 +110,10 @@ bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) { return ggml_backend_buft_is_host(ggml_backend_buffer_type(buffer)); } +void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { + buffer->usage = usage; +} + ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer) { return buffer->buft; } @@ -773,7 +778,7 @@ static ggml_backend_t get_allocr_backend(ggml_backend_sched_t sched, ggml_talloc } #if 0 -static char causes[GGML_DEFAULT_GRAPH_SIZE*8 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove +static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug, remove #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__) #define GET_CAUSE(node) causes[hash_id(node)] #else @@ -808,17 +813,25 @@ static ggml_backend_t sched_backend_from_cur(ggml_backend_sched_t sched, struct if (src == NULL) { break; } + ggml_backend_t src_backend = get_buffer_backend(sched, src->buffer); - if (src_backend != NULL) { + if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { + // operations with weights are always on the same backend as the weights + cur_backend = src_backend; + SET_CAUSE(node, "1.wgt%d", i); + break; + } + + //if (src_backend != NULL) { int src_prio = sched_backend_prio(sched, src_backend); size_t src_size = ggml_nbytes(src); - if (src_prio < cur_prio && src_size >= cur_size) { + if (/*src_prio < cur_prio &&*/ src_size >= cur_size) { cur_prio = src_prio; cur_size = src_size; cur_backend = src_backend; SET_CAUSE(node, "1.src%d", i); } - } + //} } return cur_backend; } @@ -929,6 +942,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g } //printf("PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); +#if 0 // pass 2: assign backends to ops from current assignments // TODO: // - reuse sched_backend_from_cur @@ -960,6 +974,23 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g } } } +#else + // pass 2: assign backends to ops from current assignments + // start from the end and assign the same backend to previous ops + { + ggml_tallocr_t cur_allocr = NULL; + for (int i = graph->n_nodes - 1; i >= 0; i--) { + struct ggml_tensor * node = graph->nodes[i]; + ggml_tallocr_t node_allocr = node_allocr(node); + if (node_allocr != NULL) { + cur_allocr = node_allocr; + } else { + node_allocr(node) = cur_allocr; + SET_CAUSE(node, "2.cur"); + } + } + } +#endif //printf("PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph); // pass 3: assign backends to remaining src from dst (should only be leafs) @@ -1025,9 +1056,21 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g } ggml_tallocr_t src_allocr = node_allocr(src); if (src_allocr != node_allocr) { - int n_inputs = sched->splits[cur_split].n_inputs++; - GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); - sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src; + // check if the input is already in the split + bool found = false; + for (int k = 0; k < sched->splits[cur_split].n_inputs; k++) { + if (sched->splits[cur_split].inputs[k] == src) { + found = true; + break; + } + } + + if (!found) { + int n_inputs = sched->splits[cur_split].n_inputs++; + //printf("split %d input %d: %s (%s)\n", cur_split, n_inputs, src->name, ggml_backend_name(get_allocr_backend(sched, src_allocr))); + GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); + sched->splits[cur_split].inputs[n_inputs] = (struct ggml_tensor *)src; + } // create copies size_t id = hash_id(src); @@ -1231,6 +1274,10 @@ void ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cg sched_reset(sched); } +int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) { + return sched->n_splits; +} + ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend) { int backend_index = sched_backend_prio(sched, backend); return sched->tallocs[backend_index]; @@ -1316,6 +1363,7 @@ static void graph_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor struct ggml_tensor * dst = node_copies[id]; if (dst->view_src != NULL) { + graph_init_tensor(hash_set, node_copies, node_init, src->view_src); ggml_backend_view_init(dst->view_src->buffer, dst); } else { diff --git a/ggml-backend.h b/ggml-backend.h index a9d2fddd726a8..dd1327d545c5b 100644 --- a/ggml-backend.h +++ b/ggml-backend.h @@ -24,6 +24,11 @@ extern "C" { GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); // buffer + enum ggml_backend_buffer_usage { + GGML_BACKEND_BUFFER_USAGE_ANY = 0, + GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1, + }; + GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); @@ -32,8 +37,10 @@ extern "C" { GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_type(ggml_backend_buffer_t buffer); + // // Backend // @@ -146,6 +153,7 @@ extern "C" { // Initialize backend buffers from a measure graph GGML_API void ggml_backend_sched_init_measure(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); + GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched); GGML_API ggml_tallocr_t ggml_backend_sched_get_tallocr(ggml_backend_sched_t sched, ggml_backend_t backend); GGML_API ggml_backend_buffer_t ggml_backend_sched_get_buffer (ggml_backend_sched_t sched, ggml_backend_t backend); diff --git a/ggml-cuda.cu b/ggml-cuda.cu index 52d3cc6a6a67c..c083068b465d3 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -554,10 +554,6 @@ struct cuda_device_capabilities { static cuda_device_capabilities g_device_caps[GGML_CUDA_MAX_DEVICES] = { {0, false, 0} }; -static void * g_scratch_buffer = nullptr; -static size_t g_scratch_size = 0; // disabled by default -static size_t g_scratch_offset = 0; - static cublasHandle_t g_cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr}; [[noreturn]] @@ -9158,247 +9154,7 @@ static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_spl return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]); } -void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor) { - const int64_t nrows = ggml_nrows(tensor); - - const int64_t ne0 = tensor->ne[0]; - - const size_t nb1 = tensor->nb[1]; - - ggml_backend_type backend = tensor->backend; - ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu; - memset(extra, 0, sizeof(*extra)); - - for (int id = 0; id < g_device_count; ++id) { - if (backend == GGML_BACKEND_GPU && id != g_main_device) { - continue; - } - - ggml_cuda_set_device(id); - - int64_t row_low, row_high; - if (backend == GGML_BACKEND_GPU) { - row_low = 0; - row_high = nrows; - } else if (backend == GGML_BACKEND_GPU_SPLIT) { - const int64_t rounding = get_row_rounding(tensor->type); - - row_low = id == 0 ? 0 : nrows*g_tensor_split[id]; - row_low -= row_low % rounding; - - if (id == g_device_count - 1) { - row_high = nrows; - } else { - row_high = nrows*g_tensor_split[id + 1]; - row_high -= row_high % rounding; - } - } else { - GGML_ASSERT(false); - } - if (row_low == row_high) { - continue; - } - - int64_t nrows_split = row_high - row_low; - - const size_t offset_split = row_low*nb1; - size_t size = ggml_nbytes_split(tensor, nrows_split); - const size_t original_size = size; - - // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses - if (ne0 % MATRIX_ROW_PADDING != 0) { - size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); - } - - char * buf; - CUDA_CHECK(cudaMalloc(&buf, size)); - char * buf_host = (char *)data + offset_split; - - // set padding to 0 to avoid possible NaN values - if (size > original_size) { - CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size)); - } - - CUDA_CHECK(cudaMemcpy(buf, buf_host, original_size, cudaMemcpyHostToDevice)); - - extra->data_device[id] = buf; - - if (backend == GGML_BACKEND_GPU_SPLIT) { - for (int64_t is = 0; is < MAX_STREAMS; ++is) { - CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming)); - } - } - } - - tensor->extra = extra; -} - -void ggml_cuda_free_data(struct ggml_tensor * tensor) { - if (!tensor || !tensor->extra || (tensor->backend != GGML_BACKEND_GPU && tensor->backend != GGML_BACKEND_GPU_SPLIT) ) { - return; - } - - ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - - for (int id = 0; id < g_device_count; ++id) { - ggml_cuda_set_device(id); - if (extra->data_device[id] != nullptr) { - CUDA_CHECK(cudaFree(extra->data_device[id])); - } - - for (int64_t is = 0; is < MAX_STREAMS; ++is) { - if (extra->events[id][is] != nullptr) { - CUDA_CHECK(cudaEventDestroy(extra->events[id][is])); - } - } - } - - delete extra; -} - -static ggml_tensor_extra_gpu * g_temp_tensor_extras = nullptr; -static size_t g_temp_tensor_extra_index = 0; - -static ggml_tensor_extra_gpu * ggml_cuda_alloc_temp_tensor_extra() { - if (g_temp_tensor_extras == nullptr) { - g_temp_tensor_extras = new ggml_tensor_extra_gpu[GGML_CUDA_MAX_NODES]; - } - - size_t alloc_index = g_temp_tensor_extra_index; - g_temp_tensor_extra_index = (g_temp_tensor_extra_index + 1) % GGML_CUDA_MAX_NODES; - ggml_tensor_extra_gpu * extra = &g_temp_tensor_extras[alloc_index]; - memset(extra, 0, sizeof(*extra)); - - return extra; -} - -static void ggml_cuda_assign_buffers_impl(struct ggml_tensor * tensor, bool scratch, bool force_inplace, bool no_alloc) { - if (scratch && g_scratch_size == 0) { - return; - } - - tensor->backend = GGML_BACKEND_GPU; - - // recursively assign CUDA buffers until a compute tensor is found - if (tensor->src[0] != nullptr && tensor->src[0]->backend == GGML_BACKEND_CPU) { - const ggml_op src0_op = tensor->src[0]->op; - if (src0_op == GGML_OP_RESHAPE || src0_op == GGML_OP_TRANSPOSE || src0_op == GGML_OP_VIEW || src0_op == GGML_OP_PERMUTE) { - ggml_cuda_assign_buffers_impl(tensor->src[0], scratch, force_inplace, no_alloc); - } - } - if (tensor->op == GGML_OP_CPY && tensor->src[1]->backend == GGML_BACKEND_CPU) { - ggml_cuda_assign_buffers_impl(tensor->src[1], scratch, force_inplace, no_alloc); - } - - if (scratch && no_alloc) { - return; - } - - ggml_tensor_extra_gpu * extra; - - const bool inplace = (tensor->src[0] != nullptr && tensor->src[0]->data == tensor->data) || - tensor->op == GGML_OP_VIEW || - force_inplace; - const size_t size = ggml_nbytes(tensor); - - ggml_cuda_set_device(g_main_device); - if (inplace && (tensor->src[0]->backend == GGML_BACKEND_GPU || tensor->src[0]->backend == GGML_BACKEND_GPU_SPLIT)) { - ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->src[0]->extra; - char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; - size_t offset = 0; - if (tensor->op == GGML_OP_VIEW) { - memcpy(&offset, tensor->op_params, sizeof(size_t)); - } - extra = ggml_cuda_alloc_temp_tensor_extra(); - extra->data_device[g_main_device] = src0_ddc + offset; - } else if (tensor->op == GGML_OP_CPY) { - ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu * ) tensor->src[1]->extra; - void * src1_ddv = src1_extra->data_device[g_main_device]; - extra = ggml_cuda_alloc_temp_tensor_extra(); - extra->data_device[g_main_device] = src1_ddv; - } else if (scratch) { - GGML_ASSERT(size <= g_scratch_size); - if (g_scratch_offset + size > g_scratch_size) { - g_scratch_offset = 0; - } - - char * data = (char *) g_scratch_buffer; - if (data == nullptr) { - CUDA_CHECK(cudaMalloc(&data, g_scratch_size)); - g_scratch_buffer = data; - } - extra = ggml_cuda_alloc_temp_tensor_extra(); - extra->data_device[g_main_device] = data + g_scratch_offset; - - g_scratch_offset += size; - - GGML_ASSERT(g_scratch_offset <= g_scratch_size); - } else { // allocate new buffers outside of scratch - void * data; - CUDA_CHECK(cudaMalloc(&data, size)); - CUDA_CHECK(cudaMemset(data, 0, size)); - extra = new ggml_tensor_extra_gpu; - memset(extra, 0, sizeof(*extra)); - extra->data_device[g_main_device] = data; - } - - tensor->extra = extra; -} - -void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset) { - if (g_scratch_size == 0) { - return; - } - if (g_scratch_buffer == nullptr) { - ggml_cuda_set_device(g_main_device); - CUDA_CHECK(cudaMalloc(&g_scratch_buffer, g_scratch_size)); - } - - ggml_tensor_extra_gpu * extra = ggml_cuda_alloc_temp_tensor_extra(); - - const bool inplace = tensor->view_src != nullptr; - - if (inplace && (tensor->view_src->backend == GGML_BACKEND_GPU || tensor->view_src->backend == GGML_BACKEND_GPU_SPLIT)) { - ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu * ) tensor->view_src->extra; - char * src0_ddc = (char *) src0_extra->data_device[g_main_device]; - size_t view_offset = 0; - if (tensor->op == GGML_OP_VIEW) { - memcpy(&view_offset, tensor->op_params, sizeof(size_t)); - } - extra->data_device[g_main_device] = src0_ddc + view_offset; - } else { - extra->data_device[g_main_device] = (char *) g_scratch_buffer + offset; - } - - tensor->extra = extra; -} - -void ggml_cuda_copy_to_device(struct ggml_tensor * tensor) { - GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); - GGML_ASSERT(ggml_is_contiguous(tensor)); - - ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) tensor->extra; - ggml_cuda_set_device(g_main_device); - CUDA_CHECK(cudaMemcpy(extra->data_device[g_main_device], tensor->data, ggml_nbytes(tensor), cudaMemcpyHostToDevice)); -} - -void ggml_cuda_assign_buffers(struct ggml_tensor * tensor) { - ggml_cuda_assign_buffers_impl(tensor, true, false, false); -} - -void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor) { - ggml_cuda_assign_buffers_impl(tensor, true, false, true); -} - -void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor) { - ggml_cuda_assign_buffers_impl(tensor, false, false, false); -} - -void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor) { - ggml_cuda_assign_buffers_impl(tensor, false, true, false); -} - -void ggml_cuda_set_main_device(const int main_device) { +static void ggml_cuda_set_main_device(const int main_device) { if (main_device >= g_device_count) { fprintf(stderr, "warning: cannot set main_device=%d because there are only %d devices. Using device %d instead.\n", main_device, g_device_count, g_main_device); @@ -9407,28 +9163,10 @@ void ggml_cuda_set_main_device(const int main_device) { if (g_main_device != main_device && g_device_count > 1) { g_main_device = main_device; - cudaDeviceProp prop; - CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device)); - fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name); - } -} - -void ggml_cuda_set_scratch_size(const size_t scratch_size) { - // this is a hack to not completely break llama.cpp when using multiple models or contexts simultaneously - // it still won't always work as expected, but it's better than nothing - if (scratch_size > g_scratch_size) { - ggml_cuda_free_scratch(); + //cudaDeviceProp prop; + //CUDA_CHECK(cudaGetDeviceProperties(&prop, g_main_device)); + //fprintf(stderr, "%s: using device %d (%s) as main device\n", __func__, g_main_device, prop.name); } - g_scratch_size = std::max(g_scratch_size, scratch_size); -} - -void ggml_cuda_free_scratch() { - if (g_scratch_buffer == nullptr) { - return; - } - - CUDA_CHECK(cudaFree(g_scratch_buffer)); - g_scratch_buffer = nullptr; } bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { @@ -9609,6 +9347,12 @@ void ggml_cuda_get_device_description(int device, char * description, size_t des #define UNUSED GGML_UNUSED +struct ggml_backend_context_cuda { + int device; + char name[128]; +}; + + // cuda buffer struct ggml_backend_buffer_context_cuda { @@ -9689,8 +9433,8 @@ static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, gg ggml_cuda_set_device(ctx->device); CUDA_CHECK(cudaDeviceSynchronize()); - CUDA_CHECK(cudaMemcpy((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice)); + CUDA_CHECK(cudaDeviceSynchronize()); } static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { @@ -9700,7 +9444,6 @@ static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, co ggml_cuda_set_device(ctx->device); CUDA_CHECK(cudaDeviceSynchronize()); - CUDA_CHECK(cudaMemcpy(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost)); } @@ -9709,8 +9452,8 @@ static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t ggml_cuda_set_device(ctx->device); CUDA_CHECK(cudaDeviceSynchronize()); - CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size)); + CUDA_CHECK(cudaDeviceSynchronize()); } static struct ggml_backend_buffer_i cuda_backend_buffer_interface = { @@ -9734,7 +9477,11 @@ static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_bac size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0 void * dev_ptr; - CUDA_CHECK(cudaMalloc(&dev_ptr, size)); + cudaError_t err = cudaMalloc(&dev_ptr, size); + if (err != cudaSuccess) { + fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, device, cudaGetErrorString(err)); + return nullptr; + } ggml_backend_buffer_context_cuda * ctx = new ggml_backend_buffer_context_cuda(device, dev_ptr); @@ -9768,9 +9515,14 @@ static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_t } static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { - return ggml_backend_is_cuda(backend); + if (!ggml_backend_is_cuda(backend)) { + return false; + } - UNUSED(buft); + int device = (int) (intptr_t) buft->context; + ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context; + + return device == cuda_ctx->device; } static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = { @@ -9838,14 +9590,13 @@ ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { // backend -struct ggml_backend_context_cuda { - int device; -}; - static const char * ggml_backend_cuda_name(ggml_backend_t backend) { - return GGML_CUDA_NAME; - - UNUSED(backend); + //return GGML_CUDA_NAME; + //UNUSED(backend); + ggml_backend_context_cuda * cuda_ctx = (ggml_backend_context_cuda *)backend->context; + // TODO: on init + sprintf(cuda_ctx->name, "%s%d", "CUD", cuda_ctx->device); + return cuda_ctx->name; } static void ggml_backend_cuda_free(ggml_backend_t backend) { @@ -10123,6 +9874,21 @@ bool ggml_backend_is_cuda(ggml_backend_t backend) { return backend->iface.get_name == ggml_backend_cuda_name; } +int ggml_backend_cuda_get_device_count() { + return ggml_cuda_get_device_count(); +} + +void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) { + ggml_cuda_get_device_description(device, description, description_size); +} + +void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) { + ggml_cuda_set_device(device); + + CUDA_CHECK(cudaMemGetInfo(free, total)); +} + +// backend registry static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) { ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data); return cuda_backend; diff --git a/ggml-cuda.h b/ggml-cuda.h index cdb0c0c41618a..7b48782d64e95 100644 --- a/ggml-cuda.h +++ b/ggml-cuda.h @@ -27,22 +27,6 @@ GGML_API void * ggml_cuda_host_malloc(size_t size); GGML_API void ggml_cuda_host_free(void * ptr); GGML_API bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); -GGML_API void ggml_cuda_set_tensor_split(const float * tensor_split); -GGML_API void ggml_cuda_transform_tensor(void * data, struct ggml_tensor * tensor); -GGML_API void ggml_cuda_free_data(struct ggml_tensor * tensor); - -GGML_API void ggml_cuda_assign_buffers(struct ggml_tensor * tensor); -GGML_API void ggml_cuda_assign_buffers_no_scratch(struct ggml_tensor * tensor); -GGML_API void ggml_cuda_assign_buffers_force_inplace(struct ggml_tensor * tensor); - -GGML_API void ggml_cuda_assign_buffers_no_alloc(struct ggml_tensor * tensor); -GGML_API void ggml_cuda_assign_scratch_offset(struct ggml_tensor * tensor, size_t offset); -GGML_API void ggml_cuda_copy_to_device(struct ggml_tensor * tensor); - -GGML_API void ggml_cuda_set_main_device(int main_device); -GGML_API void ggml_cuda_set_mul_mat_q(bool mul_mat_q); -GGML_API void ggml_cuda_set_scratch_size(size_t scratch_size); -GGML_API void ggml_cuda_free_scratch(void); GGML_API bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); GGML_API int ggml_cuda_get_device_count(void); @@ -52,13 +36,17 @@ GGML_API void ggml_cuda_get_device_description(int device, char * description, GGML_API ggml_backend_t ggml_backend_cuda_init(int device); GGML_API bool ggml_backend_is_cuda(ggml_backend_t backend); -GGML_API int ggml_backend_cuda_get_device(ggml_backend_t backend); GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); - -// pinned host buffer for use with CPU backend for faster copies between CPU and GPU +// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU GGML_API ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); +GGML_API int ggml_backend_cuda_get_device_count(void); +GGML_API void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); +GGML_API void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); + + + #ifdef __cplusplus } #endif diff --git a/ggml.c b/ggml.c index b124f14cc15ee..42a6bae2bfa75 100644 --- a/ggml.c +++ b/ggml.c @@ -2324,6 +2324,10 @@ struct ggml_context * ggml_init(struct ggml_init_params params) { } void ggml_free(struct ggml_context * ctx) { + if (ctx == NULL) { + return; + } + // make this function thread safe ggml_critical_section_start(); diff --git a/llama.cpp b/llama.cpp index 3bb056dba2e6d..266f2b1f81f93 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1,5 +1,4 @@ #define LLAMA_API_INTERNAL -//#define LLAMA_GGML_BACKEND_CUDA_TEST // for testing only - enables ggml-cuda through ggml-backend, disables partial offloading #include "llama.h" #include "unicode.h" @@ -152,10 +151,6 @@ static bool is_float_close(float a, float b, float abs_tol) { return std::fabs(b - a) <= abs_tol; } -#ifdef GGML_USE_CPU_HBM -#include -#endif - static void zeros(std::ofstream & file, size_t n) { char zero = 0; for (size_t i = 0; i < n; ++i) { @@ -1190,12 +1185,6 @@ struct llama_mlock { #endif }; -typedef void (*offload_func_t)(struct ggml_tensor * tensor); - -static void ggml_offload_nop(struct ggml_tensor * tensor) { - (void) tensor; -} - static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { std::vector result(8, 0); const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); @@ -1211,19 +1200,15 @@ static std::string llama_token_to_piece(const struct llama_context * ctx, llama_ return std::string(result.data(), result.size()); } -static ggml_backend_buffer_type_t llama_default_buffer_type(int n_gpu_layers) { +static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) { ggml_backend_buffer_type_t buft = nullptr; -#ifdef GGML_USE_METAL - if (n_gpu_layers > 0) { - buft = ggml_backend_metal_buffer_type(); - } -#elif defined(GGML_USE_CUBLAS) && defined(LLAMA_GGML_BACKEND_CUDA_TEST) - if (n_gpu_layers > 0) { - buft = ggml_backend_cuda_buffer_type(0); +#if defined(GGML_USE_CUBLAS) + // in some cases such as the KV cache, there is no benefit to using a host buffer, + // since the data is never copied to the GPU + if (host_buffer) { + buft = ggml_backend_cuda_host_buffer_type(); } -#elif defined(GGML_USE_CUBLAS) - buft = ggml_backend_cuda_host_buffer_type(); #elif defined(GGML_USE_CPU_HBM) buft = ggml_backend_cpu_hbm_buffer_type(); #endif @@ -1231,10 +1216,42 @@ static ggml_backend_buffer_type_t llama_default_buffer_type(int n_gpu_layers) { if (buft == nullptr) { buft = ggml_backend_cpu_buffer_type(); } + return buft; + + GGML_UNUSED(host_buffer); +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) { + ggml_backend_buffer_type_t buft = nullptr; + +#ifdef GGML_USE_METAL + buft = ggml_backend_metal_buffer_type(); +#elif defined(GGML_USE_CUBLAS) + buft = ggml_backend_cuda_buffer_type(gpu); +#endif + + if (buft == nullptr) { + buft = llama_default_buffer_type_cpu(true); + } + return buft; + + GGML_UNUSED(gpu); +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_split(int main_gpu, const float * tensor_split) { + ggml_backend_buffer_type_t buft = nullptr; + +#ifdef GGML_USE_CUBLAS + // TODO + // buft = ggml_backend_cuda_buffer_type_split(tensor_split); +#endif + if (buft == nullptr) { + buft = llama_default_buffer_type_offload(main_gpu); + } return buft; - GGML_UNUSED(n_gpu_layers); + GGML_UNUSED(tensor_split); } // @@ -1445,24 +1462,16 @@ struct llama_kv_cache { std::vector k_l; // per layer std::vector v_l; - struct ggml_context * ctx = NULL; - - ggml_backend_buffer_t buf = NULL; + std::vector ctxs; + std::vector bufs; ~llama_kv_cache() { -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - if (ggml_cublas_loaded()) { - for (size_t i = 0; i < k_l.size(); ++i) { - ggml_cuda_free_data(k_l[i]); - ggml_cuda_free_data(v_l[i]); - } - } -#endif - if (ctx) { + for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } - - ggml_backend_buffer_free(buf); + for (ggml_backend_buffer_t buf : bufs) { + ggml_backend_buffer_free(buf); + } } }; @@ -1539,16 +1548,31 @@ struct llama_model { std::vector layers; + int main_gpu; int n_gpu_layers; // gguf metadata std::unordered_map gguf_kv; - // context - struct ggml_context * ctx = NULL; + // layer -> buffer type mapping + struct layer_buft { + layer_buft() : buft_matrix(nullptr), buft(nullptr) {} + layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {} + layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {} + + ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication + ggml_backend_buffer_type_t buft; // everything else + }; + + layer_buft buft_input; + layer_buft buft_output; + std::vector buft_layer; - // the model memory buffer - ggml_backend_buffer_t buf = NULL; + // contexts where the model tensors metadata is stored + std::vector ctxs; + + // the model memory buffers for the tensor data + std::vector bufs; // model memory mapped file std::unique_ptr mapping; @@ -1564,39 +1588,27 @@ struct llama_model { int64_t t_start_us = 0; ~llama_model() { -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - if (ggml_cublas_loaded()) { - for (size_t i = 0; i < tensors_by_name.size(); ++i) { - ggml_cuda_free_data(tensors_by_name[i].second); - } - ggml_cuda_free_scratch(); - } -#endif - -#if defined(GGML_USE_CLBLAST) - for (size_t i = 0; i < tensors_by_name.size(); ++i) { - ggml_cl_free_data(tensors_by_name[i].second); - } -#endif - if (ctx) { + for (struct ggml_context * ctx : ctxs) { ggml_free(ctx); } - - ggml_backend_buffer_free(buf); + for (ggml_backend_buffer_t buf : bufs) { + ggml_backend_buffer_free(buf); + } } }; struct llama_context { llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {} ~llama_context() { - ggml_allocr_free(alloc); - ggml_backend_buffer_free(buf_alloc); + ggml_backend_sched_free(sched); + // TODO: free all backends ggml_backend_free(backend); } llama_cparams cparams; ggml_backend_t backend = nullptr; + ggml_backend_t backend_cpu = nullptr; const llama_model & model; @@ -1630,8 +1642,9 @@ struct llama_context { // memory buffers used to evaluate the model std::vector buf_compute_meta; - ggml_backend_buffer_t buf_alloc = NULL; - ggml_allocr * alloc = NULL; + ggml_backend_sched_t sched = nullptr; + // allocator for the input tensors + ggml_tallocr * alloc = nullptr; // temporary buffer for copying data to/from the backend std::vector> buf_copy; @@ -1646,16 +1659,17 @@ struct llama_context { // static bool llama_kv_cache_init( - const struct llama_hparams & hparams, struct llama_kv_cache & cache, + const llama_model & model, ggml_type ktype, ggml_type vtype, uint32_t n_ctx, - int n_gpu_layers, bool offload) { + const struct llama_hparams & hparams = model.hparams; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); - const uint32_t n_layer = hparams.n_layer; + const int64_t n_layer = hparams.n_layer; cache.has_shift = false; @@ -1666,62 +1680,61 @@ static bool llama_kv_cache_init( cache.cells.clear(); cache.cells.resize(n_ctx); - struct ggml_init_params params; - params.mem_size = 2u*n_layer*ggml_tensor_overhead(); - params.mem_buffer = NULL; - params.no_alloc = true; - - cache.ctx = ggml_init(params); - - size_t vram_kv_cache = 0; + // count used buffer types + std::map buft_layer_count; + if (offload) { + for (int64_t i = 0; i < n_layer; ++i) { + buft_layer_count[model.buft_layer[i].buft]++; + } + } else { + buft_layer_count[llama_default_buffer_type_cpu(false)] = n_layer; + } - if (!cache.ctx) { - LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__); - return false; + std::map ctx_map; + for (auto & it : buft_layer_count) { + int n_layers = it.second; + struct ggml_init_params params = { + /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context * ctx = ggml_init(params); + if (!ctx) { + LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__); + return false; + } + ctx_map[it.first] = ctx; + cache.ctxs.push_back(ctx); } cache.k_l.reserve(n_layer); cache.v_l.reserve(n_layer); - const int i_gpu_start = (int) n_layer - n_gpu_layers; - for (int i = 0; i < (int) n_layer; i++) { - ggml_tensor * k = ggml_new_tensor_1d(cache.ctx, ktype, n_embd_k_gqa*n_ctx); - ggml_tensor * v = ggml_new_tensor_1d(cache.ctx, vtype, n_embd_v_gqa*n_ctx); + struct ggml_context * ctx = offload ? ctx_map[model.buft_layer[i].buft] : cache.ctxs.front(); + ggml_tensor * k = ggml_new_tensor_1d(ctx, ktype, n_embd_k_gqa*n_ctx); + ggml_tensor * v = ggml_new_tensor_1d(ctx, vtype, n_embd_v_gqa*n_ctx); ggml_format_name(k, "cache_k_l%d", i); ggml_format_name(v, "cache_v_l%d", i); cache.k_l.push_back(k); cache.v_l.push_back(v); -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - if (i >= i_gpu_start) { - if (offload) { - ggml_cuda_assign_buffers_no_scratch(k); - ggml_cuda_assign_buffers_no_scratch(v); - vram_kv_cache += ggml_nbytes(k); - vram_kv_cache += ggml_nbytes(v); - // HACK: mark tensor as allocated - k->data = v->data = (void *)(uintptr_t)1; - } - } -#endif // GGML_USE_CUBLAS } - // allocate tensors - cache.buf = ggml_backend_alloc_ctx_tensors_from_buft(cache.ctx, llama_default_buffer_type(n_gpu_layers)); - - // buf may be NULL with full offload - if (cache.buf) { - // initialize the buffer to avoid NaNs in the padding - ggml_backend_buffer_clear(cache.buf, 0); - } - - if (vram_kv_cache > 0) { - LLAMA_LOG_INFO("%s: VRAM kv self = %.2f MB\n", __func__, vram_kv_cache / 1024.0 / 1024.0); + // allocate tensors and initialize the buffers to avoid NaNs in the padding + for (auto it : ctx_map) { + ggml_backend_buffer_type_t buft = it.first; + ggml_context * ctx = it.second; + ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); + if (!buf) { + LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__); + return false; + } + ggml_backend_buffer_clear(buf, 0); + // FIXME: buffer type name + LLAMA_LOG_INFO("%s: KV %10s buffer size: %.02f MiB\n", __func__, "???", ggml_backend_buffer_get_size(buf)/1024.0/1024.0); + cache.bufs.push_back(buf); } - GGML_UNUSED(i_gpu_start); - GGML_UNUSED(offload); - return true; } @@ -2326,9 +2339,8 @@ struct llama_model_loader { return get_tensor_meta(get_tensor_name(i)); } - struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend_type backend) { + struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta) { struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta); - tensor->backend = backend; // TODO: ggml_set_backend ggml_set_name(tensor, ggml_get_name(meta)); n_created++; @@ -2336,7 +2348,7 @@ struct llama_model_loader { return tensor; } - struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, ggml_backend_type backend, bool required = true) { + struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, bool required = true) { struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str()); if (cur == NULL) { @@ -2346,11 +2358,12 @@ struct llama_model_loader { throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); } - if (backend == GGML_BACKEND_GPU_SPLIT) { - if (ne.size() == 1) { - throw std::runtime_error(format("%s: 1-dimensional tensor '%s' cannot be split on the GPU", __func__, name.c_str())); - } - } + // FIXME: this should be ggml_backend_cuda_split_buffer_type + //if (backend == GGML_BACKEND_GPU_SPLIT) { + // if (ne.size() == 1) { + // throw std::runtime_error(format("%s: 1-dimensional tensor '%s' cannot be split on the GPU", __func__, name.c_str())); + // } + //} { bool is_ok = true; @@ -2369,7 +2382,7 @@ struct llama_model_loader { } } - return create_tensor_for(ctx, cur, backend); + return create_tensor_for(ctx, cur); } void done_getting_tensors() const { @@ -2396,7 +2409,7 @@ struct llama_model_loader { for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i)); - if (cur->backend == GGML_BACKEND_CPU) { + if (cur->backend == buffer_type_cpu) { size_t tensor_end = gguf_get_tensor_offset(ctx_gguf, i) + ggml_nbytes(cur); size_pref = std::max(size_pref, tensor_end); } @@ -2424,36 +2437,36 @@ struct llama_model_loader { } } - // Returns false if cancelled by progress_callback - bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) const { - size_t size_data = 0; + size_t size_done = 0; + size_t size_data = 0; + size_t mmap_first = -1; + size_t mmap_last = 0; - for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { - struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i)); - size_data += ggml_nbytes(cur); - } + // Returns false if cancelled by progress_callback + bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) { + // TODO: move to a better place + if (size_data == 0) { + for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { + struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i)); + size_data += ggml_nbytes(cur); + } - if (use_mmap && buf_mmap) { - if (lmlock) { - lmlock->init(mapping->addr); + if (use_mmap && buf_mmap) { + // FIXME + //if (lmlock) { + // lmlock->init(mapping->addr); + //} } } -#if (defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST)) || defined(GGML_USE_CLBLAST) - const bool legacy_offload = true; -#else - const bool legacy_offload = false; -#endif - std::vector> read_buf; - size_t size_done = 0; - - size_t mmap_first = -1; - size_t mmap_last = 0; for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) { struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i)); + if (!cur) { + continue; + } GGML_ASSERT(cur); // unused tensors should have been caught by load_data already if (progress_callback) { @@ -2464,69 +2477,48 @@ struct llama_model_loader { const size_t offs = file_offset(ggml_get_name(cur)); - if (!legacy_offload || cur->backend == GGML_BACKEND_CPU) { - if (use_mmap && mapping) { - if (buf_mmap) { - ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + offs); - if (lmlock) { - lmlock->grow_to(offs + ggml_nbytes(cur)); - } - mmap_first = std::min(mmap_first, offs); - mmap_last = std::max(mmap_last, offs + ggml_nbytes(cur)); - } else { - ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + offs, 0, ggml_nbytes(cur)); + // FIXME + if (use_mmap && mapping) { + if (buf_mmap && cur->data == nullptr) { + ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + offs); + if (lmlock) { + lmlock->grow_to(offs + ggml_nbytes(cur)); } + mmap_first = std::min(mmap_first, offs); + mmap_last = std::max(mmap_last, offs + ggml_nbytes(cur)); } else { - if (ggml_backend_buffer_is_host(cur->buffer)) { - file.seek(offs, SEEK_SET); - file.read_raw(cur->data, ggml_nbytes(cur)); - } else { - read_buf.resize(ggml_nbytes(cur)); - file.seek(offs, SEEK_SET); - file.read_raw(read_buf.data(), ggml_nbytes(cur)); - ggml_backend_tensor_set(cur, read_buf.data(), 0, ggml_nbytes(cur)); - } + ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + offs, 0, ggml_nbytes(cur)); } } else { - // HACK: mark tensor as allocated - cur->data = (void *)(uintptr_t)1; - void * data; - if (use_mmap && mapping) { - data = (uint8_t *) mapping->addr + offs; + if (ggml_backend_buffer_is_host(cur->buffer)) { + file.seek(offs, SEEK_SET); + file.read_raw(cur->data, ggml_nbytes(cur)); } else { read_buf.resize(ggml_nbytes(cur)); file.seek(offs, SEEK_SET); file.read_raw(read_buf.data(), ggml_nbytes(cur)); - data = read_buf.data(); + ggml_backend_tensor_set(cur, read_buf.data(), 0, ggml_nbytes(cur)); } - -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - ggml_cuda_transform_tensor(data, cur); -#elif defined(GGML_USE_CLBLAST) - GGML_ASSERT(cur->backend == GGML_BACKEND_GPU); - ggml_cl_transform_tensor(data, cur); -#else - GGML_ASSERT(!"GPU tensor without a GPU backend"); - GGML_UNUSED(data); -#endif } size_done += ggml_nbytes(cur); } - // unmap offloaded tensors and metadata - if (use_mmap && mapping) { - mapping->unmap_fragment(0, mmap_first); - mapping->unmap_fragment(mmap_last, mapping->size); - } - - if (progress_callback) { + if (progress_callback && size_done >= size_data) { // Even though the model is done loading, we still honor // cancellation since we need to free allocations. return progress_callback(1.0f, progress_callback_user_data); } return true; } + + void unmap_fragments() { + // unmap offloaded tensors and metadata + if (use_mmap && mapping) { + mapping->unmap_fragment(0, mmap_first); + mapping->unmap_fragment(mmap_last, mapping->size); + } + } }; // @@ -3148,702 +3140,560 @@ static bool llm_load_tensors( void * progress_callback_user_data) { model.t_start_us = ggml_time_us(); - auto & ctx = model.ctx; auto & hparams = model.hparams; + model.main_gpu = main_gpu; model.n_gpu_layers = n_gpu_layers; - size_t ctx_size = ggml_tensor_overhead() * ml.n_tensors; + size_t ctx_size = ggml_tensor_overhead()*ml.n_tensors; + + // TODO: user configurable + enum gpu_split_mode { + CUDA_SPLIT_NONE, // single GPU + CUDA_SPLIT_LAYER, // offload layers to different GPUs + CUDA_SPLIT_ROW // split matrix rows across GPUs + }; + + gpu_split_mode split_mode = CUDA_SPLIT_LAYER; + const int64_t n_layer = hparams.n_layer; + const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0); + - LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, ctx_size/1024.0/1024.0); + // there is very little benefit to offloading the input layers, so always keep it on the CPU + model.buft_input = llama_default_buffer_type_cpu(true); + model.buft_layer.resize(n_layer); + // cpu layers + for (int64_t i = 0; i < i_gpu_start; ++i) { + model.buft_layer[i] = llama_default_buffer_type_cpu(true); + } - // create the ggml context +#ifdef GGML_USE_CUBLAS + if (split_mode == CUDA_SPLIT_LAYER) { + int device_count = ggml_backend_cuda_get_device_count(); + float splits[GGML_CUDA_MAX_DEVICES]; + std::copy(tensor_split, tensor_split + device_count, splits); + bool all_zero = std::all_of(splits, splits + device_count, [](float x) { return x == 0.0f; }); + if (all_zero) { + // set by free memory + for (int i = 0; i < device_count; ++i) { + size_t total; + size_t free; + ggml_backend_cuda_get_device_memory(i, &total, &free); + splits[i] = free; + } + } + float split_sum = 0.0f; + for (int i = 0; i < device_count; ++i) { + split_sum += splits[i]; + splits[i] = split_sum; + } + for (int i = 0; i < device_count; ++i) { + splits[i] /= split_sum; + printf("split[%d] = %.2f\n", i, splits[i]); + } + + int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1); + + // assign layers proportionally, in reverse order + for (int64_t i = i_gpu_start; i < n_layer; ++i) { + int layer_gpu = std::upper_bound(splits, splits + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits; + printf("layer %d -> gpu %d\n", (int)i, layer_gpu); + model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu); + } + // output layer + if (n_gpu_layers > n_layer) { + int layer_gpu = std::upper_bound(splits, splits + device_count, float(n_layer)/act_gpu_layers) - splits; + printf("output -> gpu %d\n", layer_gpu); + model.buft_output = llama_default_buffer_type_offload(layer_gpu); + } else { + model.buft_output = llama_default_buffer_type_cpu(true); + } + } else +#endif { + // offload layers + for (int64_t i = i_gpu_start; i < n_layer; ++i) { + model.buft_layer[i] = { llama_default_buffer_type_split(main_gpu, tensor_split), llama_default_buffer_type_offload(main_gpu) }; + } + // output layer + if (n_gpu_layers > n_layer) { + model.buft_output = { llama_default_buffer_type_split(main_gpu, tensor_split), llama_default_buffer_type_offload(main_gpu) }; + } else { + model.buft_output = llama_default_buffer_type_cpu(true); + } + } + + // count used buffer types + std::map buft_layer_count; + buft_layer_count[model.buft_input.buft]++; + buft_layer_count[model.buft_input.buft_matrix]++; + buft_layer_count[model.buft_output.buft]++; + buft_layer_count[model.buft_output.buft_matrix]++; + for (int64_t i = 0; i < n_layer; ++i) { + buft_layer_count[model.buft_layer[i].buft]++; + buft_layer_count[model.buft_layer[i].buft_matrix]++; + } + + // create one context per buffer type + std::map ctx_map; + for (auto & it : buft_layer_count) { struct ggml_init_params params = { /*.mem_size =*/ ctx_size, /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; - - model.ctx = ggml_init(params); - if (!model.ctx) { - throw std::runtime_error(format("ggml_init() failed")); + ggml_context * ctx = ggml_init(params); + if (!ctx) { + throw std::runtime_error(format("failed to create context")); } + ctx_map[it.first] = ctx; + model.ctxs.push_back(ctx); } - (void) main_gpu; - - enum ggml_backend_type llama_backend_offload = GGML_BACKEND_CPU; - enum ggml_backend_type llama_backend_offload_split = GGML_BACKEND_CPU; - -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - if (ggml_cublas_loaded()) { - LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__); - ggml_cuda_set_main_device(main_gpu); - - llama_backend_offload = GGML_BACKEND_GPU; - llama_backend_offload_split = GGML_BACKEND_GPU_SPLIT; - } -#elif defined(GGML_USE_CLBLAST) - LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__); - llama_backend_offload = GGML_BACKEND_GPU; - llama_backend_offload_split = GGML_BACKEND_GPU; -#endif + LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0); // create tensors for the weights { const int64_t n_embd = hparams.n_embd; const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + const int64_t n_embd_gqa = n_embd_v_gqa; const int64_t n_layer = hparams.n_layer; const int64_t n_vocab = hparams.n_vocab; + const int64_t n_ff = hparams.n_ff; + + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); + + // FIXME: for metal, it may be better to put the input on the GPU context - however it may make no difference in practice, + // and it would increase the metal buffer size + ggml_context * ctx_input = ctx_map.at(model.buft_input.buft); + ggml_context * ctx_output = ctx_map.at(model.buft_output.buft); + ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix); + auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); }; + auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); }; + + model.layers.resize(n_layer); const auto tn = LLM_TN(model.arch); switch (model.arch) { case LLM_ARCH_LLAMA: case LLM_ARCH_REFACT: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split); - layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split); - layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); // optional bias tensors - layer.bq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, backend, false); - layer.bk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, backend, false); - layer.bv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, backend, false); - layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend, false); + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false); - layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate_inp = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, backend, false); + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, false); if (layer.ffn_gate_inp == nullptr) { GGML_ASSERT(hparams.n_expert == 0); GGML_ASSERT(hparams.n_expert_used == 0); - layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } else { GGML_ASSERT(hparams.n_expert > 0); GGML_ASSERT(hparams.n_expert_used > 0); // MoE branch for (uint32_t x = 0; x < hparams.n_expert; ++x) { - layer.ffn_gate_exp[x] = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff}, backend_split); - layer.ffn_down_exp[x] = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd}, backend_split); - layer.ffn_up_exp[x] = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff}, backend_split); + layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff}); + layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd}); + layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff}); } } } } break; case LLM_ARCH_BAICHUAN: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split); - layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split); - layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_FALCON: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); - layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) { - layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend); - layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend); + layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}); + layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}); } - layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_STARCODER: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); - model.pos_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); // output { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); - layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); - layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend); + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); - layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); - layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); - layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; case LLM_ARCH_PERSIMMON: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); - const int i_gpu_start = n_layer - n_gpu_layers; - model.layers.resize(n_layer); - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); - layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); - layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); - layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); - layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); - layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend); - layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); - layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); - layer.attn_q_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}, backend); - layer.attn_q_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}, backend); - layer.attn_k_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}, backend); - layer.attn_k_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}, backend); + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}); + layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}); + + layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}); + layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}); } } break; case LLM_ARCH_BLOOM: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); - model.tok_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, GGML_BACKEND_CPU); - model.tok_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_norm = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); + model.tok_norm_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); // output { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); - layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); - layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend); + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); - layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); - layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); - layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; case LLM_ARCH_MPT: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + // output { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); - layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); // AWQ ScaleActivation layer - layer.ffn_act = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, backend, false); + layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false); } } break; case LLM_ARCH_STABLELM: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - /* - llama_model_loader: - tensor 4: blk.0.attn_output.weight f16 [ 2560, 2560, 1, 1 ] - */ - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); - layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split); - layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split); - layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); - layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_QWEN: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); - { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); - } + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); - const uint32_t n_ff = hparams.n_ff / 2; - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd * 3}, backend_split); - layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd * 3}, backend); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd * 3}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd * 3}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); - layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}); } } break; case LLM_ARCH_PHI2: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); - model.output_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); - layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); - layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend); + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); - layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); - layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; case LLM_ARCH_PLAMO: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // output { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); - layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split); - layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split); - layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); - layer.ffn_gate = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); } } break; case LLM_ARCH_GPT2: { - model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); - model.pos_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU); + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); // output { - ggml_backend_type backend_norm; - ggml_backend_type backend_output; - - if (n_gpu_layers > int(n_layer)) { - backend_norm = llama_backend_offload; - backend_output = llama_backend_offload_split; - } else { - backend_norm = GGML_BACKEND_CPU; - backend_output = GGML_BACKEND_CPU; - } - - model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm); - model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm); - model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); } - const uint32_t n_ff = hparams.n_ff; - const int64_t n_embd_gqa = n_embd_v_gqa; - GGML_ASSERT(n_embd_gqa == n_embd / hparams.n_gqa()); - GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); - - const int i_gpu_start = n_layer - n_gpu_layers; - - model.layers.resize(n_layer); - - for (uint32_t i = 0; i < n_layer; ++i) { - const ggml_backend_type backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload; // NOLINT - const ggml_backend_type backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : llama_backend_offload_split; // NOLINT + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); auto & layer = model.layers[i]; - layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend); - layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend); + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); - layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split); - layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend); + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); - layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split); - layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); - layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend); - layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); - layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split); - layer.ffn_down_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); - layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); - layer.ffn_up_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); } } break; default: @@ -3855,76 +3705,52 @@ static bool llm_load_tensors( ml.init_mapping(); - // allocate tensors - size_t vram_weights = 0; - size_t buf_size = 0; + // TODO: move to ggml + //auto ggml_n_tensors = [](struct ggml_context * ctx) { + // int n = 0; + // for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { + // ++n; + // } + // return n; + //}; - ggml_backend_buffer_type_t buft = llama_default_buffer_type(n_gpu_layers); + // create backend buffers - for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { - // GGML_BACKEND_GPU tensors are for CUDA and OpenCL only, which are handled separately without ggml-backend - if (t->backend == GGML_BACKEND_CPU) { - buf_size += GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), ggml_backend_buft_get_alignment(buft)); - } else { - vram_weights += ggml_nbytes(t); - } - } + std::vector> ctx_bufs; - // create backend buffer - ggml_backend_buffer_t buf_mmap = nullptr; + for (auto & it : ctx_map) { + ggml_backend_buffer_type_t buft = it.first; + ggml_context * ctx = it.second; + ggml_backend_buffer_t buf = nullptr; + // TODO: do not use whole model mapping for the buffer, only the region containing the tensors + // this is important for metal: if the entire model could be mapped, then we could use metal for all layers + if (ml.use_mmap && buft == ggml_backend_cpu_buffer_type()) { + buf = ggml_backend_cpu_buffer_from_ptr(ml.mapping->addr, ml.mapping->size); + } #ifdef GGML_USE_METAL - if (n_gpu_layers > 0) { - if (ml.use_mmap) { + else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) { const size_t max_size = ggml_get_max_tensor_size(ctx); - model.buf = ggml_backend_metal_buffer_from_ptr(ml.mapping->addr, ml.mapping->size, max_size); - buf_mmap = model.buf; - } else { - model.buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_metal_buffer_type()); + buf = ggml_backend_metal_buffer_from_ptr(ml.mapping->addr, ml.mapping->size, max_size); } - } -#elif defined(GGML_USE_CUBLAS) && defined(LLAMA_GGML_BACKEND_CUDA_TEST) - // for testing only - if (n_gpu_layers > 0) { - model.buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_cuda_buffer_type(0)); - } #endif - - if (model.buf == nullptr) { - // CPU backend, and indirectly CUDA and OpenCL - if (ml.use_mmap) { - model.buf = ggml_backend_cpu_buffer_from_ptr(ml.mapping->addr, ml.mapping->size); - buf_mmap = model.buf; - } else { - // allocate only CPU tensors - model.buf = ggml_backend_buft_alloc_buffer(buft, buf_size); - ggml_tallocr_t alloc = ggml_tallocr_new_from_buffer(model.buf); - for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) { - if (t->backend == GGML_BACKEND_CPU) { - ggml_tallocr_alloc(alloc, t); - } + else { + buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); + if (buf != nullptr && use_mlock && ggml_backend_buffer_is_host(buf)) { + model.mlock_buf.init (ggml_backend_buffer_get_base(buf)); + model.mlock_buf.grow_to(ggml_backend_buffer_get_size(buf)); } - ggml_tallocr_free(alloc); } - } - - if (use_mlock && ggml_backend_buffer_is_host(model.buf)) { - model.mlock_buf.init (ggml_backend_buffer_get_base(model.buf)); - model.mlock_buf.grow_to(ggml_backend_buffer_get_size(model.buf)); + if (buf == nullptr) { + throw std::runtime_error("failed to allocate buffer"); + } + ggml_backend_buffer_set_usage(buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); + model.bufs.push_back(buf); + ctx_bufs.emplace_back(ctx, buf); } // print memory requirements { - size_t sys_mem_required = ctx_size + buf_size; - - if (sys_mem_required > 0) { - LLAMA_LOG_INFO("%s: system memory used = %7.2f MiB\n", __func__, sys_mem_required / 1024.0 / 1024.0); - } - if (vram_weights > 0) { - LLAMA_LOG_INFO("%s: VRAM used = %7.2f MiB\n", __func__, vram_weights / 1024.0 / 1024.0); - } - -#if (defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST)) || defined(GGML_USE_CLBLAST) const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); @@ -3936,24 +3762,35 @@ static bool llm_load_tensors( const int max_offloadable_layers = hparams.n_layer + 1; LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); -#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) - } -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - ggml_cuda_set_tensor_split(tensor_split); -#else - GGML_UNUSED(tensor_split); -#endif // GGML_USE_CUBLAS + for (ggml_backend_buffer_t buf : model.bufs) { + // FIXME: add buffer type names to ggml-backend + const char * name; + if (ggml_backend_buffer_type(buf) == ggml_backend_cpu_buffer_type()) { + name = "CPU"; + } else { + name = "???"; + } + LLAMA_LOG_INFO("%s: %10s buffer size = %7.2f MiB\n", __func__, name, ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0); + } + } // populate tensors_by_name - for (int i = 0; i < ml.n_tensors; ++i) { - struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i)); - model.tensors_by_name.emplace_back(ggml_get_name(cur), cur); + for (ggml_context * ctx : model.ctxs) { + for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { + model.tensors_by_name.emplace_back(ggml_get_name(cur), cur); + } } - if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf_mmap, use_mlock ? &model.mlock_mmap : NULL)) { - return false; + // load data + for (auto & it : ctx_bufs) { + ggml_context * ctx = it.first; + ggml_backend_buffer_t buf = it.second; + if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf, use_mlock ? &model.mlock_mmap : NULL)) { + return false; + } } + ml.unmap_fragments(); model.mapping = std::move(ml.mapping); @@ -4438,8 +4275,6 @@ struct llm_build_context { do_rope_shift (worst_case || kv_self.has_shift), cb (cb), buf_compute_meta (lctx.buf_compute_meta) { - GGML_ASSERT(!!kv_self.ctx); - // all initializations should be done in init() } @@ -6047,199 +5882,13 @@ struct llm_build_context { } }; -// -// tensor offloading helpers -// -// TODO: will be removed with backend v2 - -enum llm_offload_func_e { - OFFLOAD_FUNC_NOP, - OFFLOAD_FUNC, - OFFLOAD_FUNC_FRC, // force offload - OFFLOAD_FUNC_KQV, - OFFLOAD_FUNC_NR, - OFFLOAD_FUNC_EMB, // embeddings - OFFLOAD_FUNC_OUT, -}; - -// TODO: will be removed with backend v2 -struct llm_offload_trie { - struct node { - ~node() { - for (int i = 0; i < 256; ++i) { - if (children[i]) { - delete children[i]; - } - } - } - - node * children[256] = { nullptr }; - llm_offload_func_e func = OFFLOAD_FUNC_NOP; - }; - - llm_offload_trie() { - root = new node; - } - - llm_offload_trie(const std::unordered_map & map) { - root = new node; - - for (const auto & kv : map) { - add(kv.first, kv.second); - } - } - - ~llm_offload_trie() { - delete root; - } - - void add(const char * name, llm_offload_func_e func) { - node * cur = root; - - for (int i = 0; ; ++i) { - const uint8_t c = name[i]; - - if (!c) { - break; - } - - if (!cur->children[c]) { - cur->children[c] = new node; - } - - cur = cur->children[c]; - } - - cur->func = func; - } - - llm_offload_func_e find(const char * name) const { - const node * cur = root; - - for (int i = 0; ; ++i) { - const uint8_t c = name[i]; - - if (!c) { - break; - } - - if (!cur->children[c]) { - return OFFLOAD_FUNC_NOP; - } - - cur = cur->children[c]; - } - - return cur->func; - } - - node * root = nullptr; -}; - -// TODO: will be removed with backend v2 -static const std::unordered_map k_offload_map = { - //{ "inp_tokens", OFFLOAD_FUNC_NR }, // TODO: missing K-quants get_rows kernel - //{ "inp_embd", OFFLOAD_FUNC_NR }, // TODO: missing K-quants get_rows kernel - { "pos_embd", OFFLOAD_FUNC_NR }, - - { "inp_pos", OFFLOAD_FUNC_FRC }, // this is often used for KQ ops (e.g. rope) - { "KQ_mask", OFFLOAD_FUNC_FRC }, - { "K_shift", OFFLOAD_FUNC_FRC }, - - { "K_shifted", OFFLOAD_FUNC }, - - { "inp_norm", OFFLOAD_FUNC_NR }, - { "inp_norm_w", OFFLOAD_FUNC_NR }, - { "inp_norm_wb", OFFLOAD_FUNC_NR }, - - { "norm", OFFLOAD_FUNC }, - { "norm_w", OFFLOAD_FUNC }, - { "norm_wb", OFFLOAD_FUNC }, - - { "attn_norm", OFFLOAD_FUNC }, - { "attn_norm_2", OFFLOAD_FUNC }, - - { "wqkv", OFFLOAD_FUNC_KQV }, - { "bqkv", OFFLOAD_FUNC_KQV }, - { "wqkv_clamped", OFFLOAD_FUNC_KQV }, - - { "tmpk", OFFLOAD_FUNC_KQV }, - { "tmpq", OFFLOAD_FUNC_KQV }, - { "tmpv", OFFLOAD_FUNC_KQV }, - { "Kcur", OFFLOAD_FUNC_KQV }, - { "Qcur", OFFLOAD_FUNC_KQV }, - { "Vcur", OFFLOAD_FUNC_KQV }, - - { "krot", OFFLOAD_FUNC_KQV }, - { "qrot", OFFLOAD_FUNC_KQV }, - { "kpass", OFFLOAD_FUNC_KQV }, - { "qpass", OFFLOAD_FUNC_KQV }, - { "krotated", OFFLOAD_FUNC_KQV }, - { "qrotated", OFFLOAD_FUNC_KQV }, - - { "q", OFFLOAD_FUNC_KQV }, - { "k", OFFLOAD_FUNC_KQV }, - { "kq", OFFLOAD_FUNC_KQV }, - { "kq_scaled", OFFLOAD_FUNC_KQV }, - { "kq_scaled_alibi", OFFLOAD_FUNC_KQV }, - { "kq_masked", OFFLOAD_FUNC_KQV }, - { "kq_soft_max", OFFLOAD_FUNC_KQV }, - { "kq_soft_max_ext", OFFLOAD_FUNC_KQV }, - { "v", OFFLOAD_FUNC_KQV }, - { "kqv", OFFLOAD_FUNC_KQV }, - { "kqv_merged", OFFLOAD_FUNC_KQV }, - { "kqv_merged_cont", OFFLOAD_FUNC_KQV }, - { "kqv_wo", OFFLOAD_FUNC_KQV }, - { "kqv_out", OFFLOAD_FUNC_KQV }, - - { "ffn_inp", OFFLOAD_FUNC }, - { "ffn_norm", OFFLOAD_FUNC }, - - { "ffn_up", OFFLOAD_FUNC }, - { "ffn_up_b", OFFLOAD_FUNC }, - { "ffn_gate", OFFLOAD_FUNC }, - { "ffn_gate_b", OFFLOAD_FUNC }, - { "ffn_gate_par", OFFLOAD_FUNC }, - { "ffn_act", OFFLOAD_FUNC }, - { "ffn_down", OFFLOAD_FUNC }, - { "ffn_down_b", OFFLOAD_FUNC }, - { "ffn_out", OFFLOAD_FUNC }, - - { "ffn_silu", OFFLOAD_FUNC }, - { "ffn_gelu", OFFLOAD_FUNC }, - { "ffn_relu", OFFLOAD_FUNC }, - { "ffn_sqr(relu)", OFFLOAD_FUNC }, - - { "ffn_moe_logits", OFFLOAD_FUNC }, - { "ffn_moe_probs", OFFLOAD_FUNC }, - { "ffn_moe_argsort", OFFLOAD_FUNC }, - { "ffn_moe_weights", OFFLOAD_FUNC }, - { "ffn_moe_weights_sum", OFFLOAD_FUNC }, - { "ffn_moe_weights_norm", OFFLOAD_FUNC }, - { "ffn_moe_weighted", OFFLOAD_FUNC }, - { "ffn_moe_up", OFFLOAD_FUNC }, - { "ffn_moe_gate", OFFLOAD_FUNC }, - { "ffn_moe_silu", OFFLOAD_FUNC }, - { "ffn_moe_gate_par", OFFLOAD_FUNC }, - { "ffn_moe_down", OFFLOAD_FUNC }, - { "ffn_moe_out", OFFLOAD_FUNC }, - - { "l_out", OFFLOAD_FUNC }, - - { "result_norm", OFFLOAD_FUNC_EMB }, - { "result_output_no_bias", OFFLOAD_FUNC_EMB }, - { "result_output", OFFLOAD_FUNC_OUT }, -}; - -static llm_offload_trie k_offload_func_trie(k_offload_map); - static struct ggml_cgraph * llama_build_graph( llama_context & lctx, const llama_batch & batch) { const auto & model = lctx.model; // check if we should build the worst-case graph (for memory measurement) - const bool worst_case = ggml_allocr_is_measure(lctx.alloc); + const bool worst_case = ggml_tallocr_is_measure(lctx.alloc); // keep track of the input that has already been allocated bool alloc_inp_tokens = false; @@ -6248,16 +5897,8 @@ static struct ggml_cgraph * llama_build_graph( bool alloc_inp_KQ_mask = false; bool alloc_inp_K_shift = false; -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - const bool do_offload = true; -#else - const bool do_offload = true; // TODO: set to false after finishing refactoring -#endif - - int n_non_view = 0; // number of non-view tensors that have been processed by the callback - // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.) - // TODO: will be removed with backend v2 + // TODO: improve handling of input and output tensors, then replace this with ggml_set_name llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) { if (il >= 0) { ggml_format_name(cur, "%s-%d", name, il); @@ -6268,12 +5909,11 @@ static struct ggml_cgraph * llama_build_graph( // // allocate input tensors and set input data // - // TODO: will be removed with backend v2 if (!alloc_inp_tokens && strcmp(name, "inp_tokens") == 0) { - ggml_allocr_alloc(lctx.alloc, cur); + ggml_tallocr_alloc(lctx.alloc, cur); - if (!ggml_allocr_is_measure(lctx.alloc) && batch.token) { + if (!ggml_tallocr_is_measure(lctx.alloc) && batch.token) { const int64_t n_tokens = cur->ne[0]; ggml_backend_tensor_set(cur, batch.token, 0, n_tokens*ggml_element_size(cur)); @@ -6282,10 +5922,11 @@ static struct ggml_cgraph * llama_build_graph( alloc_inp_tokens = true; } - if (!alloc_inp_embd && strcmp(name, "inp_embd") == 0) { - ggml_allocr_alloc(lctx.alloc, cur); + // FIXME: allocating this conditionally will result in issues with the measure allocator + if (!alloc_inp_embd && strcmp(name, "inp_embd") == 0 && batch.embd) { + ggml_tallocr_alloc(lctx.alloc, cur); - if (!ggml_allocr_is_measure(lctx.alloc) && batch.embd) { + if (!ggml_tallocr_is_measure(lctx.alloc) && batch.embd) { const int64_t n_embd = cur->ne[0]; const int64_t n_tokens = cur->ne[1]; @@ -6296,9 +5937,9 @@ static struct ggml_cgraph * llama_build_graph( } if (!alloc_inp_pos && strcmp(name, "inp_pos") == 0) { - ggml_allocr_alloc(lctx.alloc, cur); + ggml_tallocr_alloc(lctx.alloc, cur); - if (!ggml_allocr_is_measure(lctx.alloc) && batch.pos) { + if (!ggml_tallocr_is_measure(lctx.alloc) && batch.pos) { const int64_t n_tokens = cur->ne[0]; static_assert(std::is_same::value, "llama_pos must be int32_t"); @@ -6309,9 +5950,9 @@ static struct ggml_cgraph * llama_build_graph( } if (!alloc_inp_KQ_mask && strcmp(name, "KQ_mask") == 0) { - ggml_allocr_alloc(lctx.alloc, cur); + ggml_tallocr_alloc(lctx.alloc, cur); - if (!ggml_allocr_is_measure(lctx.alloc)) { + if (!ggml_tallocr_is_measure(lctx.alloc)) { const int64_t n_kv = cur->ne[0]; const int64_t n_tokens = cur->ne[1]; @@ -6349,9 +5990,9 @@ static struct ggml_cgraph * llama_build_graph( } if (!alloc_inp_K_shift && strcmp(name, "K_shift") == 0) { - ggml_allocr_alloc(lctx.alloc, cur); + ggml_tallocr_alloc(lctx.alloc, cur); - if (!ggml_allocr_is_measure(lctx.alloc)) { + if (!ggml_tallocr_is_measure(lctx.alloc)) { const int64_t n_ctx = cur->ne[0]; int32_t * data; @@ -6373,136 +6014,6 @@ static struct ggml_cgraph * llama_build_graph( alloc_inp_K_shift = true; } - - // view tensors are not processed further - if (cur->view_src != nullptr) { - return; - } - - if (cur->op != GGML_OP_NONE) { - n_non_view++; - } - - // - // offload layers - // - // TODO: will be removed with backend v2 - -//#define LLAMA_OFFLOAD_DEBUG - - if (!do_offload) { - return; - } - - const int n_layer = model.hparams.n_layer; - - const int n_gpu_layers = model.n_gpu_layers; - const int i_gpu_start = n_layer - n_gpu_layers; - - // should we offload the final norm? yes if we are not computing embeddings - const bool offload_emb = lctx.embedding.empty(); - - static const std::unordered_map> k_offload_func_name = { - { OFFLOAD_FUNC_NOP, "CPU" }, - { OFFLOAD_FUNC_OUT, "CPU" }, -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - { OFFLOAD_FUNC, "GPU (CUDA)" }, - { OFFLOAD_FUNC_FRC, "GPU (CUDA) FRC" }, - { OFFLOAD_FUNC_KQV, "GPU (CUDA) KQV" }, - { OFFLOAD_FUNC_NR, "GPU (CUDA) NR" }, - { OFFLOAD_FUNC_EMB, "GPU (CUDA) EMB" }, -#else - { OFFLOAD_FUNC, "CPU" }, - { OFFLOAD_FUNC_FRC, "CPU" }, - { OFFLOAD_FUNC_KQV, "CPU" }, - { OFFLOAD_FUNC_NR, "CPU" }, - { OFFLOAD_FUNC_EMB, "CPU" }, -#endif // GGML_USE_CUBLAS - }; - - // check the global map for what offload function to use for this tensor - llm_offload_func_e func_e = k_offload_func_trie.find(name); - - if (func_e == OFFLOAD_FUNC_NOP) { -#ifdef LLAMA_OFFLOAD_DEBUG - // if a tensor hasn't been offloaded, we warn the user - if (worst_case) { - LLAMA_LOG_WARN("%s: %32s: not offloaded (ref: %s)\n", __func__, - cur->name, "https://github.com/ggerganov/llama.cpp/pull/3837"); - } -#endif - - return; - } - - // count the number of layers and respect the provided n_gpu_layers - switch (func_e) { - case OFFLOAD_FUNC_NOP: - case OFFLOAD_FUNC_OUT: - break; - case OFFLOAD_FUNC: - if (n_gpu_layers < n_layer) { - if (il < i_gpu_start) { - func_e = OFFLOAD_FUNC_NOP; - } - } - break; - case OFFLOAD_FUNC_FRC: - if (!lctx.cparams.offload_kqv) { - func_e = OFFLOAD_FUNC_NOP; - } break; - case OFFLOAD_FUNC_KQV: - if (!lctx.cparams.offload_kqv) { - func_e = OFFLOAD_FUNC_NOP; - } else { - if (n_gpu_layers < n_layer) { - if (il < i_gpu_start) { - func_e = OFFLOAD_FUNC_NOP; - } - } - } - break; - case OFFLOAD_FUNC_NR: - if (n_gpu_layers <= n_layer + 0) { - func_e = OFFLOAD_FUNC_NOP; - } - break; - case OFFLOAD_FUNC_EMB: - if (!offload_emb || n_gpu_layers < n_layer) { - func_e = OFFLOAD_FUNC_NOP; - } - break; - default: GGML_ASSERT(false); - } - - offload_func_t func = ggml_offload_nop; - - // this is needed for compatibility with Metal for example -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - static offload_func_t ggml_offload_gpu = ggml_cuda_assign_buffers_no_alloc; -#else - static offload_func_t ggml_offload_gpu = ggml_offload_nop; -#endif - - switch (func_e) { - case OFFLOAD_FUNC_NOP: - case OFFLOAD_FUNC_OUT: func = ggml_offload_nop; break; - case OFFLOAD_FUNC: - case OFFLOAD_FUNC_KQV: - case OFFLOAD_FUNC_FRC: - case OFFLOAD_FUNC_NR: - case OFFLOAD_FUNC_EMB: func = ggml_offload_gpu; break; - default: GGML_ASSERT(false); - } - - // apply offload function to the tensor - func(cur); - -#ifdef LLAMA_OFFLOAD_DEBUG - if (worst_case) { - LLAMA_LOG_INFO("%s: %32s: %s\n", __func__, cur->name, k_offload_func_name.at(func_e).c_str()); - } -#endif }; struct ggml_cgraph * result = NULL; @@ -6570,27 +6081,6 @@ static struct ggml_cgraph * llama_build_graph( llm.free(); - if (worst_case) { - int n_non_view_total = 0; - - for (int i = 0; i < result->n_nodes; ++i) { - if (result->nodes[i]->view_src == nullptr) { - n_non_view_total++; - } - } - - LLAMA_LOG_INFO("%s: non-view tensors processed: %d/%d\n", __func__, n_non_view, n_non_view_total); - - if (n_non_view != n_non_view_total) { - LLAMA_LOG_WARN("%s: ****************************************************************\n", __func__); - LLAMA_LOG_WARN("%s: not all non-view tensors have been processed with a callback\n", __func__); - LLAMA_LOG_WARN("%s: this can indicate an inefficiency in the graph implementation\n", __func__); - LLAMA_LOG_WARN("%s: build with LLAMA_OFFLOAD_DEBUG for more info\n", __func__); - LLAMA_LOG_WARN("%s: ref: https://github.com/ggerganov/llama.cpp/pull/3837\n", __func__); - LLAMA_LOG_WARN("%s: ****************************************************************\n", __func__); - } - } - return result; } @@ -6636,8 +6126,6 @@ static int llama_decode_internal( auto & kv_self = lctx.kv_self; - GGML_ASSERT(!!kv_self.ctx); - const int64_t n_embd = hparams.n_embd; const int64_t n_vocab = hparams.n_vocab; @@ -6691,12 +6179,8 @@ static int llama_decode_internal( //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); - ggml_allocr_reset(lctx.alloc); - ggml_cgraph * gf = llama_build_graph(lctx, batch); - ggml_allocr_alloc_graph(lctx.alloc, gf); - // the output is always the last tensor in the graph struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; GGML_ASSERT(strcmp(res->name, "result_output") == 0); @@ -6708,30 +6192,6 @@ static int llama_decode_internal( GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0); } -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - char * buf_alloc_base = (char *)ggml_backend_buffer_get_base(lctx.buf_alloc); - for (int i = 0; i < gf->n_leafs; i++) { - ggml_tensor * node = gf->leafs[i]; - if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) { - ggml_cuda_assign_scratch_offset(node, (char *)node->data - buf_alloc_base); - ggml_cuda_copy_to_device(node); - } - } - - for (int i = 0; i < gf->n_nodes; i++) { - ggml_tensor * node = gf->nodes[i]; - if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) { - ggml_cuda_assign_scratch_offset(node, (char *)node->data - buf_alloc_base); - } - } - - // HACK: ggml-alloc may change the tensor backend when reusing a parent, so force output to be on the CPU here if needed - if (!lctx.embedding.empty()) { - embeddings->backend = GGML_BACKEND_CPU; - } - res->backend = GGML_BACKEND_CPU; -#endif - // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); // for big prompts, if BLAS is enabled, it is better to use only one thread @@ -6759,10 +6219,10 @@ static int llama_decode_internal( } #endif - if (ggml_backend_is_cpu(lctx.backend)) { - ggml_backend_cpu_set_n_threads(lctx.backend, n_threads); + if (lctx.backend_cpu != nullptr) { + ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads); } - ggml_backend_graph_compute(lctx.backend, gf); + ggml_backend_sched_graph_compute(lctx.sched, gf); #ifdef GGML_USE_MPI ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); @@ -9432,19 +8892,7 @@ static int llama_apply_lora_from_file_internal( ggml_tensor * dest_t = model_tensors[base_name]; - offload_func_t offload_func = ggml_offload_nop; - offload_func_t offload_func_force_inplace = ggml_offload_nop; - -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) { - if (dest_t->type != GGML_TYPE_F16) { - throw std::runtime_error(format( - "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models. dest_t->type: %d", __func__, dest_t->type)); - } - offload_func = ggml_cuda_assign_buffers; - offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace; - } -#endif // GGML_USE_CUBLAS + // FIXME: ggml-backend ggml_tensor * base_t; if (ml) { @@ -9486,28 +8934,23 @@ static int llama_apply_lora_from_file_internal( // w = w + BA*s ggml_tensor * BA = ggml_mul_mat(lora_ctx.get(), loraA, loraB); - offload_func(BA); ggml_set_name(BA, "BA"); if (scaling != 1.0f) { BA = ggml_scale_inplace(lora_ctx.get(), BA, scaling); - offload_func(BA); ggml_set_name(BA, "BA_scaled"); } ggml_tensor * r; if (base_t == dest_t) { r = ggml_add_inplace(lora_ctx.get(), dest_t, BA); - offload_func_force_inplace(r); ggml_set_name(r, "r_add_inplace"); } else { r = ggml_add(lora_ctx.get(), base_t, BA); - offload_func(r); ggml_set_name(r, "r_add"); r = ggml_cpy(lora_ctx.get(), r, dest_t); - offload_func(r); ggml_set_name(r, "r_cpy"); } @@ -9743,41 +9186,40 @@ struct llama_context * llama_new_context_with_model( GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0); GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0); - // reserve memory for context buffers if (!hparams.vocab_only) { - // initialize backend + std::vector backends; + + // initialize backends + // TODO: only initialize the backends that are actually used #ifdef GGML_USE_METAL if (model->n_gpu_layers > 0) { ctx->backend = ggml_backend_metal_init(); if (ctx->backend == nullptr) { LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__); } + backends.push_back(ctx->backend); } -#elif defined(GGML_USE_CUBLAS) && defined(LLAMA_GGML_BACKEND_CUDA_TEST) - // for testing only +#elif defined(GGML_USE_CUBLAS) if (model->n_gpu_layers > 0) { - ctx->backend = ggml_backend_cuda_init(0); - if (ctx->backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize CUDA backend\n", __func__); + for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) { + ctx->backend = ggml_backend_cuda_init(device); + if (ctx->backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize CUDA backend for device %d\n", __func__, device); + } + backends.push_back(ctx->backend); } } #endif - - if (ctx->backend == nullptr && ggml_backend_buffer_is_host(model->buf)) { - ctx->backend = ggml_backend_cpu_init(); - if (ctx->backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__); - } - } - - if (ctx->backend == nullptr) { - LLAMA_LOG_ERROR("%s: failed to initialize a backend\n", __func__); + ctx->backend_cpu = ggml_backend_cpu_init(); + if (ctx->backend_cpu == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__); delete ctx; return nullptr; } + backends.push_back(ctx->backend_cpu); - if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, type_k, type_v, - cparams.n_ctx, model->n_gpu_layers, cparams.offload_kqv)) { + if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, + cparams.n_ctx, cparams.offload_kqv)) { LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); llama_free(ctx); return nullptr; @@ -9813,11 +9255,11 @@ struct llama_context * llama_new_context_with_model( } { - // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data + // buffer used to store the computation graph and the tensor meta data ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead()); - // create measure allocator - ctx->alloc = ggml_allocr_new_measure_from_backend(ctx->backend); + ctx->sched = ggml_backend_sched_new(backends.data(), backends.size()); + ctx->alloc = ggml_backend_sched_get_tallocr(ctx->sched, ctx->backend_cpu); // build worst-case graph int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch); @@ -9825,50 +9267,18 @@ struct llama_context * llama_new_context_with_model( llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0)); - // measure memory requirements for the graph - size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf); - - LLAMA_LOG_INFO("%s: compute buffer total size = %.2f MiB\n", __func__, (ctx->buf_compute_meta.size() + alloc_size) / 1024.0 / 1024.0); - - // create allocator again with exact memory requirements - ggml_allocr_free(ctx->alloc); - - ctx->buf_alloc = ggml_backend_alloc_buffer(ctx->backend, alloc_size); - ctx->alloc = ggml_allocr_new_from_buffer(ctx->buf_alloc); -#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) - if (model->n_gpu_layers > 0) { - // the CPU buffer adds this padding in case the malloc buffer is not aligned, so we need to do the same for the GPU buffer, since we use the same offsets - ggml_cuda_set_scratch_size(alloc_size + 64); - LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0); + // initialize scheduler with the worst-case graph + ggml_backend_sched_init_measure(ctx->sched, gf); + int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); + LLAMA_LOG_INFO("%s: graph splits: %d\n", __func__, n_splits); + ctx->alloc = ggml_backend_sched_get_tallocr(ctx->sched, ctx->backend_cpu); - // calculate total VRAM usage - auto add_tensor = [](const ggml_tensor * t, size_t & size) { - if (t->backend == GGML_BACKEND_GPU || t->backend == GGML_BACKEND_GPU_SPLIT) { - size += ggml_nbytes(t); - } - }; - size_t model_vram_size = 0; - for (const auto & kv : model->tensors_by_name) { - add_tensor(kv.second, model_vram_size); - } - - size_t kv_vram_size = 0; - for (auto & k : ctx->kv_self.k_l) { - add_tensor(k, kv_vram_size); - } - for (auto & v : ctx->kv_self.v_l) { - add_tensor(v, kv_vram_size); - } - - size_t ctx_vram_size = alloc_size + kv_vram_size; - size_t total_vram_size = model_vram_size + ctx_vram_size; - - LLAMA_LOG_INFO("%s: total VRAM used: %.2f MiB (model: %.2f MiB, context: %.2f MiB)\n", __func__, - total_vram_size / 1024.0 / 1024.0, - model_vram_size / 1024.0 / 1024.0, - ctx_vram_size / 1024.0 / 1024.0); + for (ggml_backend_t backend : backends) { + ggml_backend_buffer_t buf = ggml_backend_sched_get_buffer(ctx->sched, backend); + LLAMA_LOG_INFO("%s: %10s compute buffer size = %.2f MiB\n", __func__, + ggml_backend_name(backend), + ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0); } -#endif } } @@ -9965,9 +9375,8 @@ int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int3 } int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) { - return snprintf(buf, buf_size, "%s %s%s %s", + return snprintf(buf, buf_size, "%s %s %s", llama_model_arch_name(model->arch).c_str(), - model->hparams.n_expert > 0 ? (std::to_string(model->hparams.n_expert) + "x").c_str() : "", llama_model_type_name(model->type), llama_model_ftype_name(model->ftype).c_str()); } @@ -9989,7 +9398,14 @@ uint64_t llama_model_n_params(const struct llama_model * model) { } struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) { - return ggml_get_tensor(model->ctx, name); + auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(), + [name](const std::pair & it) { + return it.first == name; + }); + if (it == model->tensors_by_name.end()) { + return nullptr; + } + return it->second; } uint32_t llama_model_quantize( @@ -10162,7 +9578,7 @@ size_t llama_get_state_size(const struct llama_context * ctx) { const size_t s_embedding = ctx->embedding.size() * sizeof(float); const size_t s_kv_size = sizeof(size_t); const size_t s_kv_ntok = sizeof(int); - const size_t s_kv = ggml_backend_buffer_get_size(ctx->kv_self.buf); + const size_t s_kv = ggml_backend_buffer_get_size(ctx->kv_self.bufs.at(0)); // FIXME const size_t s_total = ( + s_rng_size @@ -10291,7 +9707,7 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat const auto n_embd_v_gqa = hparams.n_embd_v_gqa(); const auto n_ctx = cparams.n_ctx; - const size_t kv_buf_size = ggml_backend_buffer_get_size(kv_self.buf); + const size_t kv_buf_size = ggml_backend_buffer_get_size(kv_self.bufs.at(0)); // FIXME const uint32_t kv_head = kv_self.head; const uint32_t kv_size = kv_self.size; const uint32_t kv_used = kv_self.used; @@ -10442,7 +9858,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) { memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used); if (kv_buf_size) { - GGML_ASSERT(ggml_backend_buffer_get_size(kv_self.buf) == kv_buf_size); + GGML_ASSERT(ggml_backend_buffer_get_size(kv_self.bufs.at(0)) == kv_buf_size); // FIXME const size_t elt_size = ggml_element_size(kv_self.k_l[0]);