diff --git a/ggml-cuda.cu b/ggml-cuda.cu index db053e3b8a9d8..d1e874b6c778a 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -5664,10 +5664,10 @@ void ggml_init_cublas() { GGML_ASSERT(g_device_count <= GGML_CUDA_MAX_DEVICES); int64_t total_vram = 0; fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, g_device_count); - for (int64_t id = 0; id < g_device_count; ++id) { + for (int id = 0; id < g_device_count; ++id) { cudaDeviceProp prop; CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); - fprintf(stderr, " Device %ld: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor); + fprintf(stderr, " Device %d: %s, compute capability %d.%d\n", id, prop.name, prop.major, prop.minor); g_tensor_split[id] = total_vram; total_vram += prop.totalGlobalMem; @@ -5677,15 +5677,15 @@ void ggml_init_cublas() { g_compute_capabilities[id] = 100*prop.major + 10*prop.minor; #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } - for (int64_t id = 0; id < g_device_count; ++id) { + for (int id = 0; id < g_device_count; ++id) { g_tensor_split[id] /= total_vram; } - for (int64_t id = 0; id < g_device_count; ++id) { + for (int id = 0; id < g_device_count; ++id) { CUDA_CHECK(ggml_cuda_set_device(id)); // create cuda streams - for (int64_t is = 0; is < MAX_STREAMS; ++is) { + for (int is = 0; is < MAX_STREAMS; ++is) { CUDA_CHECK(cudaStreamCreateWithFlags(&g_cudaStreams[id][is], cudaStreamNonBlocking)); } diff --git a/ggml.c b/ggml.c index 17f0ce4877592..6f66bab051cea 100644 --- a/ggml.c +++ b/ggml.c @@ -571,7 +571,6 @@ int64_t ggml_cycles_per_ms(void) { #define ggml_perf_cycles_per_ms() 0 #endif - // // cache line // @@ -1828,7 +1827,6 @@ ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { return type_traits[type]; } - // // simd mappings // @@ -4057,16 +4055,17 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "ALIBI", "CLAMP", "CONV_1D", + "CONV_1D_STAGE_0", + "CONV_1D_STAGE_1", "CONV_TRANSPOSE_1D", "CONV_2D", + "CONV_2D_STAGE_0", + "CONV_2D_STAGE_1", "CONV_TRANSPOSE_2D", "POOL_1D", "POOL_2D", "UPSCALE", - "CONV_1D_STAGE_0", - "CONV_1D_STAGE_1", - "FLASH_ATTN", "FLASH_FF", "FLASH_ATTN_BACK", @@ -4092,7 +4091,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "CROSS_ENTROPY_LOSS_BACK", }; -static_assert(GGML_OP_COUNT == 71, "GGML_OP_COUNT != 71"); +static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -4143,16 +4142,17 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "alibi(x)", "clamp(x)", "conv_1d(x)", + "conv_1d_stage_0(x)", + "conv_1d_stage_1(x)", "conv_transpose_1d(x)", "conv_2d(x)", + "conv_2d_stage_0(x)", + "conv_2d_stage_1(x)", "conv_transpose_2d(x)", "pool_1d(x)", "pool_2d(x)", "upscale(x)", - "conv_1d_stage_0(x)", - "conv_1d_stage_1(x)", - "flash_attn(x)", "flash_ff(x)", "flash_attn_back(x)", @@ -4178,7 +4178,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "cross_entropy_loss_back(x,y)", }; -static_assert(GGML_OP_COUNT == 71, "GGML_OP_COUNT != 71"); +static_assert(GGML_OP_COUNT == 73, "GGML_OP_COUNT != 73"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -4209,8 +4209,10 @@ static void ggml_setup_op_has_task_pass(void) { p[GGML_OP_CONV_1D ] = true; p[GGML_OP_CONV_1D_STAGE_0 ] = true; p[GGML_OP_CONV_1D_STAGE_1 ] = true; - p[GGML_OP_CONV_2D ] = true; p[GGML_OP_CONV_TRANSPOSE_1D ] = true; + p[GGML_OP_CONV_2D ] = true; + p[GGML_OP_CONV_2D_STAGE_0 ] = true; + p[GGML_OP_CONV_2D_STAGE_1 ] = true; p[GGML_OP_CONV_TRANSPOSE_2D ] = true; p[GGML_OP_FLASH_ATTN_BACK ] = true; p[GGML_OP_CROSS_ENTROPY_LOSS ] = true; @@ -5954,7 +5956,6 @@ struct ggml_tensor * ggml_sqrt_inplace( return ggml_sqrt_impl(ctx, a, true); } - // ggml_log static struct ggml_tensor * ggml_log_impl( @@ -6008,7 +6009,6 @@ struct ggml_tensor * ggml_sum( return result; } - // ggml_sum_rows struct ggml_tensor * ggml_sum_rows( @@ -6640,7 +6640,6 @@ struct ggml_tensor * ggml_set_2d_inplace( return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false); } - // ggml_cpy static struct ggml_tensor * ggml_cpy_impl( @@ -6720,7 +6719,6 @@ struct ggml_tensor * ggml_cont_inplace( return ggml_cont_impl(ctx, a, true); } - // make contiguous, with new shape GGML_API struct ggml_tensor * ggml_cont_1d( struct ggml_context * ctx, @@ -7173,7 +7171,6 @@ struct ggml_tensor * ggml_diag( return result; } - // ggml_diag_mask_inf static struct ggml_tensor * ggml_diag_mask_inf_impl( @@ -7285,7 +7282,6 @@ struct ggml_tensor * ggml_soft_max_inplace( return ggml_soft_max_impl(ctx, a, true); } - // ggml_soft_max_back static struct ggml_tensor * ggml_soft_max_back_impl( @@ -7702,7 +7698,11 @@ GGML_API struct ggml_tensor * ggml_conv_transpose_1d( // ggml_conv_2d -struct ggml_tensor * ggml_conv_2d( +// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] +// a: [OC,IC, KH, KW] +// b: [N, IC, IH, IW] +// result: [N, OH, OW, IC*KH*KW] +static struct ggml_tensor * ggml_conv_2d_stage_0( struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, @@ -7721,17 +7721,21 @@ struct ggml_tensor * ggml_conv_2d( is_node = true; } + const int64_t OH = ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1); + const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0); + const int64_t ne[4] = { - ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0), - ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1), - a->ne[3], b->ne[3], + a->ne[2] * a->ne[1] * a->ne[0], + OW, + OH, + b->ne[3], }; - struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne); int32_t params[] = { s0, s1, p0, p1, d0, d1 }; ggml_set_op_params(result, params, sizeof(params)); - result->op = GGML_OP_CONV_2D; + result->op = GGML_OP_CONV_2D_STAGE_0; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->src[0] = a; result->src[1] = b; @@ -7740,8 +7744,61 @@ struct ggml_tensor * ggml_conv_2d( } -// ggml_conv_2d_sk_p0 +// gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW] +// a: [OC, IC, KH, KW] +// b: [N, OH, OW, IC * KH * KW] +// result: [N, OC, OH, OW] +static struct ggml_tensor * ggml_conv_2d_stage_1( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + + bool is_node = false; + if (a->grad || b->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { + b->ne[1], + b->ne[2], + a->ne[3], + b->ne[3], + }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + result->op = GGML_OP_CONV_2D_STAGE_1; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; + +} + +// a: [OC,IC, KH, KW] +// b: [N, IC, IH, IW] +// result: [N, OC, OH, OW] +struct ggml_tensor * ggml_conv_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1) { + + struct ggml_tensor * result = ggml_conv_2d_stage_0(ctx, a, b, s0, s1, p0, p1, d0, d1); // [N, OH, OW, IC * KH * KW] + result = ggml_conv_2d_stage_1(ctx, a, result); + + return result; + +} + +// ggml_conv_2d_sk_p0 struct ggml_tensor * ggml_conv_2d_sk_p0( struct ggml_context * ctx, struct ggml_tensor * a, @@ -8180,7 +8237,6 @@ static struct ggml_tensor * ggml_add_rel_pos_impl( return result; } - struct ggml_tensor * ggml_add_rel_pos( struct ggml_context * ctx, struct ggml_tensor * a, @@ -8625,8 +8681,6 @@ struct ggml_tensor * ggml_map_custom3_inplace( return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true); } - - // ggml_cross_entropy_loss struct ggml_tensor * ggml_cross_entropy_loss( @@ -9828,7 +9882,6 @@ static void ggml_compute_forward_add1( } } - // ggml_compute_forward_acc static void ggml_compute_forward_acc_f32( @@ -9968,7 +10021,6 @@ static void ggml_compute_forward_sub_f32( const int i2 = (ir - i3*ne2*ne1)/ne1; const int i1 = (ir - i3*ne2*ne1 - i2*ne1); - #ifdef GGML_USE_ACCELERATE vDSP_vsub( (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, @@ -10149,7 +10201,6 @@ static void ggml_compute_forward_div_f32( const int i2 = (ir - i3*ne2*ne1)/ne1; const int i1 = (ir - i3*ne2*ne1 - i2*ne1); - #ifdef GGML_USE_ACCELERATE UNUSED(ggml_vec_div_f32); @@ -10287,7 +10338,6 @@ static void ggml_compute_forward_sqrt( } } - // ggml_compute_forward_log static void ggml_compute_forward_log_f32( @@ -12120,7 +12170,6 @@ static void ggml_compute_forward_out_prod_f32( } } - //int64_t t1 = ggml_perf_time_us(); //static int64_t acc = 0; //acc += t1 - t0; @@ -12316,7 +12365,6 @@ static void ggml_compute_forward_scale_f32( const size_t nb1 = dst->nb[1]; - for (int i1 = ir0; i1 < ir1; i1++) { if (dst->data != src0->data) { // src0 is same shape as dst => same indices @@ -12714,7 +12762,6 @@ static void ggml_compute_forward_get_rows_back_f32( } } - static void ggml_compute_forward_get_rows_back( const struct ggml_compute_params * params, const struct ggml_tensor * src0, @@ -13997,6 +14044,7 @@ static void ggml_compute_forward_conv_1d_f32( } } +// TODO: reuse ggml_mul_mat or implement ggml_im2col and remove stage_0 and stage_1 static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k, ggml_fp16_t * A, ggml_fp16_t * B, @@ -14298,6 +14346,9 @@ static void ggml_compute_forward_conv_transpose_1d_f16_f32( } } + // need to zero dst since we are accumulating into it + memset(dst->data, 0, ggml_nbytes(dst)); + return; } @@ -14370,7 +14421,7 @@ static void ggml_compute_forward_conv_transpose_1d_f32( const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); float * dst_data = wdata + i01*ne00*ne02; for (int64_t i00 = 0; i00 < ne00; i00++) { - dst_data[i01*ne00*ne02 + i00*ne02 + i02] = src[i00]; + dst_data[i00*ne02 + i02] = src[i00]; } } } @@ -14389,6 +14440,9 @@ static void ggml_compute_forward_conv_transpose_1d_f32( } } + // need to zero dst since we are accumulating into it + memset(dst->data, 0, ggml_nbytes(dst)); + return; } @@ -14450,28 +14504,190 @@ static void ggml_compute_forward_conv_transpose_1d( // ggml_compute_forward_conv_2d -static void ggml_compute_forward_conv_2d_f16_f32( +// src0: kernel [OC, IC, KH, KW] +// src1: image [N, IC, IH, IW] +// dst: result [N, OH, OW, IC*KH*KW] +static void ggml_compute_forward_conv_2d_stage_0_f32( const struct ggml_compute_params * params, const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { GGML_ASSERT(src0->type == GGML_TYPE_F16); GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F16); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS; + + const int64_t N = ne13; + const int64_t IC = ne12; + const int64_t IH = ne11; + const int64_t IW = ne10; + + // const int64_t OC = ne03; + // const int64_t IC = ne02; + const int64_t KH = ne01; + const int64_t KW = ne00; + + const int64_t OH = ne2; + const int64_t OW = ne1; + + const int ith = params->ith; + const int nth = params->nth; + + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t*)(dst->op_params))[1]; + const int32_t p0 = ((const int32_t*)(dst->op_params))[2]; + const int32_t p1 = ((const int32_t*)(dst->op_params))[3]; + const int32_t d0 = ((const int32_t*)(dst->op_params))[4]; + const int32_t d1 = ((const int32_t*)(dst->op_params))[5]; + + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_INIT) { + memset(dst->data, 0, ggml_nbytes(dst)); + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + + // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data; + + for (int64_t in = 0; in < N; in++) { + for (int64_t ioh = 0; ioh < OH; ioh++) { + for (int64_t iow = 0; iow < OW; iow++) { + for (int64_t iic = ith; iic < IC; iic+=nth) { + + // micro kernel + ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] + const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW] + + for (int64_t ikh = 0; ikh < KH; ikh++) { + for (int64_t ikw = 0; ikw < KW; ikw++) { + const int64_t iiw = iow*s0 + ikw*d0 - p0; + const int64_t iih = ioh*s1 + ikh*d1 - p1; + + if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) { + dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]); + } + } + } + } + } + } + } + } +} + +// gemm: [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW] +// src0: [OC, IC, KH, KW] +// src1: [N, OH, OW, IC * KH * KW] +// result: [N, OC, OH, OW] +static void ggml_compute_forward_conv_2d_stage_1_f16( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F16); GGML_ASSERT( dst->type == GGML_TYPE_F32); int64_t t0 = ggml_perf_time_us(); UNUSED(t0); + if (params->type == GGML_TASK_INIT) { + return; + } + + if (params->type == GGML_TASK_FINALIZE) { + return; + } + GGML_TENSOR_BINARY_OP_LOCALS; + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb0 == sizeof(float)); + + const int N = ne13; + const int OH = ne12; + const int OW = ne11; + + const int OC = ne03; + const int IC = ne02; + const int KH = ne01; + const int KW = ne00; + const int ith = params->ith; const int nth = params->nth; - const int nk0 = ne00; - const int nk1 = ne01; + int64_t m = OC; + int64_t n = OH * OW; + int64_t k = IC * KH * KW; + + // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW] + for (int i = 0; i < N; i++) { + ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k] + ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k] + float * C = (float *)dst->data + i * m * n; // [m, n] + + gemm_f16_out_f32(m, n, k, A, B, C, ith, nth); + } +} + +static void ggml_compute_forward_conv_2d_f16_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS + + // src1: image [N, IC, IH, IW] + // src0: kernel [OC, IC, KH, KW] + // dst: result [N, OC, OH, OW] + // ne12: IC + // ne0: OW + // ne1: OH + // nk0: KW + // nk1: KH + // ne13: N + + const int N = ne13; + const int IC = ne12; + const int IH = ne11; + const int IW = ne10; + + const int OC = ne03; + // const int IC = ne02; + const int KH = ne01; + const int KW = ne00; + + const int OH = ne1; + const int OW = ne0; + + const int ith = params->ith; + const int nth = params->nth; + + // const int nk0 = ne00; + // const int nk1 = ne01; // size of the convolution row - the kernel size unrolled across all channels - const int ew0 = nk0*nk1*ne02; + // const int ew0 = nk0*nk1*ne02; + // ew0: IC*KH*KW const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; const int32_t s1 = ((const int32_t*)(dst->op_params))[1]; @@ -14487,24 +14703,27 @@ static void ggml_compute_forward_conv_2d_f16_f32( memset(params->wdata, 0, params->wsize); // prepare source data (src1) + // im2col: [N, IC, IH, IW] => [N*OH*OW, IC*KH*KW] + { ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; - for (int i13 = 0; i13 < ne13; i13++) { - for (int i12 = 0; i12 < ne12; i12++) { - const float * const src = (float *)((char *) src1->data + i13*nb13 + i12*nb12); - ggml_fp16_t * dst_data = wdata + i13*(ne1*ne0*ew0); - - for (int i1 = 0; i1 < ne1; i1++) { - for (int i0 = 0; i0 < ne0; i0++) { - for (int ik1 = 0; ik1 < nk1; ik1++) { - for (int ik0 = 0; ik0 < nk0; ik0++) { - const int idx0 = i0*s0 + ik0*d0 - p0; - const int idx1 = i1*s1 + ik1*d1 - p1; - - if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) { - dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] = - GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]); + for (int in = 0; in < N; in++) { + for (int iic = 0; iic < IC; iic++) { + for (int ioh = 0; ioh < OH; ioh++) { + for (int iow = 0; iow < OW; iow++) { + + // micro kernel + ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] + const float * const src_data = (float *)((char *) src1->data + in*nb13 + iic*nb12); // [IH, IW] + + for (int ikh = 0; ikh < KH; ikh++) { + for (int ikw = 0; ikw < KW; ikw++) { + const int iiw = iow*s0 + ikw*d0 - p0; + const int iih = ioh*s1 + ikh*d1 - p1; + + if (!(iih < 0 || iih >= IH || iiw < 0 || iiw >= IW)) { + dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]); } } } @@ -14521,30 +14740,22 @@ static void ggml_compute_forward_conv_2d_f16_f32( return; } - // total patches in dst - const int np = ne2; - - // patches per thread - const int dp = (np + nth - 1)/nth; + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + // wdata: [N*OH*OW, IC*KH*KW] + // dst: result [N, OC, OH, OW] + // src0: kernel [OC, IC, KH, KW] - // patch range for this thread - const int ip0 = dp*ith; - const int ip1 = MIN(ip0 + dp, np); + int64_t m = OC; + int64_t n = OH * OW; + int64_t k = IC * KH * KW; - ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + // [N, OC, OH, OW] = [OC, IC * KH * KW] x [N*OH*OW, IC * KH * KW] + for (int i = 0; i < N; i++) { + ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k] + ggml_fp16_t * B = (ggml_fp16_t *)wdata + i * m * k; // [n, k] + float * C = (float *)dst->data + i * m * n; // [m * k] - for (int i3 = 0; i3 < ne3; i3++) { - for (int i2 = ip0; i2 < ip1; i2++) { - float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2); - - for (int i1 = 0; i1 < ne1; ++i1) { - for (int i0 = 0; i0 < ne0; ++i0) { - ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0, - (ggml_fp16_t *) ((char *) src0->data + i2*nb03), - (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0); - } - } - } + gemm_f16_out_f32(m, n, k, A, B, C, ith, nth); } } @@ -14570,6 +14781,48 @@ static void ggml_compute_forward_conv_2d( } } +static void ggml_compute_forward_conv_2d_stage_0( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_2d_stage_0_f32(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(false); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_conv_2d_stage_1( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + const struct ggml_tensor * src1, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_2d_stage_1_f16(params, src0, src1, dst); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(false); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + // ggml_compute_forward_conv_transpose_2d static void ggml_compute_forward_conv_transpose_2d( @@ -14628,6 +14881,8 @@ static void ggml_compute_forward_conv_transpose_2d( } } + memset(dst->data, 0, ggml_nbytes(dst)); + return; } @@ -16126,7 +16381,6 @@ static void ggml_compute_forward_add_rel_pos_f32( const int ip0 = dp*ith; const int ip1 = MIN(ip0 + dp, np); - for (int64_t i13 = ip0; i13 < ip1; ++i13) { for (int64_t i12 = 0; i12 < ne12; ++i12) { for (int64_t i11 = 0; i11 < ne11; ++i11) { @@ -16193,7 +16447,6 @@ static void ggml_compute_forward_map_unary_f32( } } - static void ggml_compute_forward_map_unary( const struct ggml_compute_params * params, const struct ggml_tensor * src0, @@ -16241,7 +16494,6 @@ static void ggml_compute_forward_map_binary_f32( } } - static void ggml_compute_forward_map_binary( const struct ggml_compute_params * params, const struct ggml_tensor * src0, @@ -16293,7 +16545,6 @@ static void ggml_compute_forward_map_custom2_f32( fun(dst, a, b); } - // ggml_compute_forward_map_custom3 static void ggml_compute_forward_map_custom3_f32( @@ -16568,7 +16819,6 @@ static void ggml_compute_forward_cross_entropy_loss_back_f32( ggml_vec_sub_f32(nc, ds0, ds0, s1); ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr); - #ifndef NDEBUG for (int i = 0; i < nc; ++i) { assert(!isnan(ds0[i])); @@ -16596,7 +16846,6 @@ static void ggml_compute_forward_cross_entropy_loss_back( } } - ///////////////////////////////// static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { @@ -16808,6 +17057,14 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor); } break; + case GGML_OP_CONV_2D_STAGE_0: + { + ggml_compute_forward_conv_2d_stage_0(params, tensor->src[0], tensor->src[1], tensor); + } break; + case GGML_OP_CONV_2D_STAGE_1: + { + ggml_compute_forward_conv_2d_stage_1(params, tensor->src[0], tensor->src[1], tensor); + } break; case GGML_OP_CONV_TRANSPOSE_2D: { ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor); @@ -17737,11 +17994,19 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor { GGML_ASSERT(false); // TODO: not implemented } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + GGML_ASSERT(false); // TODO: not implemented + } break; case GGML_OP_CONV_2D: { GGML_ASSERT(false); // TODO: not implemented } break; - case GGML_OP_CONV_TRANSPOSE_1D: + case GGML_OP_CONV_2D_STAGE_0: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_2D_STAGE_1: { GGML_ASSERT(false); // TODO: not implemented } break; @@ -18670,6 +18935,7 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { const int64_t ne0 = node->ne[0]; const int64_t ne1 = node->ne[1]; const int64_t ne2 = node->ne[2]; + const int64_t ne3 = node->ne[3]; const int64_t nk = ne00*ne01; const int64_t ew0 = nk * ne02; @@ -18680,7 +18946,8 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { if (node->src[0]->type == GGML_TYPE_F16 && node->src[1]->type == GGML_TYPE_F32) { - cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0); + // im2col: [N*OH*OW, IC*KH*KW] + cur = sizeof(ggml_fp16_t)*(ne3*ne0*ne1*ew0); } else if (node->src[0]->type == GGML_TYPE_F32 && node->src[1]->type == GGML_TYPE_F32) { cur = sizeof(float)* (ne10*ne11*ne12); @@ -18690,6 +18957,14 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) { work_size = MAX(work_size, cur); } break; + case GGML_OP_CONV_2D_STAGE_0: + { + n_tasks = n_threads; + } break; + case GGML_OP_CONV_2D_STAGE_1: + { + n_tasks = n_threads; + } break; case GGML_OP_CONV_TRANSPOSE_2D: { n_tasks = n_threads; @@ -19878,7 +20153,6 @@ static enum ggml_opt_result ggml_opt_adam( opt->loss_after = fx; - // check convergence if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) { GGML_PRINT_DEBUG("converged\n"); diff --git a/ggml.h b/ggml.h index 16aaf169ee8fd..08bff5511c225 100644 --- a/ggml.h +++ b/ggml.h @@ -401,15 +401,16 @@ extern "C" { GGML_OP_ALIBI, GGML_OP_CLAMP, GGML_OP_CONV_1D, - GGML_OP_CONV_2D, + GGML_OP_CONV_1D_STAGE_0, // internal + GGML_OP_CONV_1D_STAGE_1, // internal GGML_OP_CONV_TRANSPOSE_1D, + GGML_OP_CONV_2D, + GGML_OP_CONV_2D_STAGE_0, // internal + GGML_OP_CONV_2D_STAGE_1, // internal GGML_OP_CONV_TRANSPOSE_2D, GGML_OP_POOL_1D, GGML_OP_POOL_2D, - GGML_OP_CONV_1D_STAGE_0, // internal - GGML_OP_CONV_1D_STAGE_1, // internal - GGML_OP_UPSCALE, // nearest interpolate GGML_OP_FLASH_ATTN, @@ -1020,9 +1021,9 @@ extern "C" { struct ggml_tensor * b, float eps); - // A: n columns, m rows - // B: n columns, p rows (i.e. we transpose it internally) - // result is m columns, p rows + // A: k columns, n rows => [ne03, ne02, n, k] + // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k] + // result is n columns, m rows => [ne03 * x, ne02 * y, m, n] GGML_API struct ggml_tensor * ggml_mul_mat( struct ggml_context * ctx, struct ggml_tensor * a,