forked from torch/optim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rprop.lua
103 lines (86 loc) · 3.45 KB
/
rprop.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
--[[ A plain implementation of RPROP
ARGS:
- `opfunc` : a function that takes a single input (X), the point of
evaluation, and returns f(X) and df/dX
- `x` : the initial point
- `state` : a table describing the state of the optimizer; after each
call the state is modified
- `state.stepsize` : initial step size, common to all components
- `state.etaplus` : multiplicative increase factor, > 1 (default 1.2)
- `state.etaminus` : multiplicative decrease factor, < 1 (default 0.5)
- `state.stepsizemax` : maximum stepsize allowed (default 50)
- `state.stepsizemin` : minimum stepsize allowed (default 1e-6)
- `state.niter` : number of iterations (default 1)
RETURN:
- `x` : the new x vector
- `f(x)` : the function, evaluated before the update
(Martin Riedmiller, Koray Kavukcuoglu 2013)
--]]
function optim.rprop(opfunc, x, config, state)
if config == nil and state == nil then
print('no state table RPROP initializing')
end
-- (0) get/update state
local config = config or {}
local state = state or config
local stepsize = config.stepsize or 0.1
local etaplus = config.etaplus or 1.2
local etaminus = config.etaminus or 0.5
local stepsizemax = config.stepsizemax or 50.0
local stepsizemin = config.stepsizemin or 1E-06
local niter = config.niter or 1
local hfx = {}
for i=1,niter do
-- (1) evaluate f(x) and df/dx
local fx,dfdx = opfunc(x)
-- init temp storage
if not state.delta then
state.delta = dfdx.new(dfdx:size()):zero()
state.stepsize = dfdx.new(dfdx:size()):fill(stepsize)
state.sign = dfdx.new(dfdx:size())
state.psign = torch.ByteTensor(dfdx:size())
state.nsign = torch.ByteTensor(dfdx:size())
state.zsign = torch.ByteTensor(dfdx:size())
state.dminmax = torch.ByteTensor(dfdx:size())
if torch.type(x)=='torch.CudaTensor' then
-- Push to GPU
state.psign = state.psign:cuda()
state.nsign = state.nsign:cuda()
state.zsign = state.zsign:cuda()
state.dminmax = state.dminmax:cuda()
end
end
-- sign of derivative from last step to this one
torch.cmul(state.sign, dfdx, state.delta)
torch.sign(state.sign, state.sign)
-- get indices of >0, <0 and ==0 entries
state.sign.gt(state.psign, state.sign, 0)
state.sign.lt(state.nsign, state.sign, 0)
state.sign.eq(state.zsign, state.sign, 0)
-- get step size updates
state.sign[state.psign] = etaplus
state.sign[state.nsign] = etaminus
state.sign[state.zsign] = 1
-- update stepsizes with step size updates
state.stepsize:cmul(state.sign)
-- threshold step sizes
-- >50 => 50
state.stepsize.gt(state.dminmax, state.stepsize, stepsizemax)
state.stepsize[state.dminmax] = stepsizemax
-- <1e-6 ==> 1e-6
state.stepsize.lt(state.dminmax, state.stepsize, stepsizemin)
state.stepsize[state.dminmax] = stepsizemin
-- for dir<0, dfdx=0
-- for dir>=0 dfdx=dfdx
dfdx[state.nsign] = 0
-- state.sign = sign(dfdx)
torch.sign(state.sign,dfdx)
-- update weights
x:addcmul(-1,state.sign,state.stepsize)
-- update state.dfdx with current dfdx
state.delta:copy(dfdx)
table.insert(hfx,fx)
end
-- return x*, f(x) before optimization
return x,hfx
end