forked from torch/cunn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
DataParallelTable.lua
742 lines (647 loc) · 21.3 KB
/
DataParallelTable.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
--[[
This file implements data parallelism for Torch modules.
The same model is replicated on multiple GPUs. The input is split, typically
into smaller mini-batches. Each replicated model handles only its portion of the input.
The weight updates for each replica are summed together on the first replica
in accGradParameters.
By default, this module uses only one thread and relies on asynchronous kernel launches.
To use multiple threads, call DataParallelTable:threads(initFunc).
For best performance, install NCCL:
https://github.com/NVIDIA/nccl
https://github.com/ngimel/nccl.torch
]]--
local DataParallelTable, parent = torch.class('nn.DataParallelTable', 'nn.Container')
local Impls = {}
local BasicImpl = torch.class('nn.DataParallelTable.Basic', Impls)
local ThreadsImpl = torch.class('nn.DataParallelTable.Threads', Impls)
-- NCCL does not work when CUDA_LAUNCH_BLOCKING is set
local cudaLaunchBlocking = os.getenv('CUDA_LAUNCH_BLOCKING') == '1'
-- extracts the value at idx from each entry in tbl
local function pluck(tbl, idx)
local r = {}
for n, val in ipairs(tbl) do
r[n] = val[idx]
end
return r
end
-- Synchronizes the current stream on dst device with src device. This is only
-- necessary if we are not on the default stream
local function waitForDevice(dst, src)
local stream = cutorch.getStream()
if stream ~= 0 then
cutorch.streamWaitForMultiDevice(dst, stream, { [src] = {stream} })
end
end
function DataParallelTable:__init(dimension, flattenParams, usenccl)
parent.__init(self)
if not dimension then
error "must specify a dimension!"
end
self.dimension = dimension
self.modules = {}
self.gpuAssignments = {} -- Which gpuid each module sits on
self.inputGpu = {} -- inputs for each gpu
self.gradOutputGpu = {} -- gradOutputs for each gpu
self.outputGpu = {} -- outputs for each gpu
self.gradInputGpu = {} -- gradInput for each gpu
self.flattenedParams = nil -- flattened parameters for each gpu
self.flattenParams = flattenParams or false
self.usenccl = false
self.needsSync = false
self.impl = Impls.Basic(self)
if usenccl then
assert(self.flattenParams, 'cannot use nccl without flattenParams')
self.usenccl = pcall(require, 'nccl')
if not self.usenccl then
print("warning: could not load nccl, falling back to default communication")
end
end
end
function DataParallelTable:add(module, gpus)
if type(gpus) == 'number' then
if #self.modules == 0 then
table.insert(self.modules, module)
end
table.insert(self.gpuAssignments, gpus)
return self
end
assert(torch.type(gpus) == 'table' and #gpus >= 1, 'table of GPU IDs required')
assert(#self.modules == 0, 'add should only be called once with a table of GPU assignments')
self.modules[1] = module
self.gpuAssignments = gpus
return self
end
function DataParallelTable:threads(initFunc)
require 'threads'
self.impl:close()
self.impl = Impls.Threads(self, initFunc)
return self
end
function DataParallelTable:__tostring()
return 'DataParallelTable: ' .. #self.gpuAssignments .. ' x ' .. tostring(self.modules[1])
end
function DataParallelTable:get(index)
return self.modules[index]
end
-- this flattens parameters, so that syncParameters and accGradParameters can be much more efficient
function DataParallelTable:flattenParameters()
self.flattenedParams = self.impl:exec(function(module)
local p, dp = module:parameters()
local flattened = true
for i=2,#p do
if p[i]:storage() ~= p[1]:storage()
or dp[i]:storage() ~= dp[1]:storage() then
flattened = false
break
end
end
if flattened then
local pp = torch.CudaTensor(p[1]:storage(), p[1]:storageOffset(),
p[#p]:storageOffset()+p[#p]:numel()-1)
local dpp = torch.CudaTensor(dp[1]:storage(), dp[1]:storageOffset(),
dp[#dp]:storageOffset()+dp[#dp]:numel()-1)
return {pp, dpp}
else
return { module:getParameters() }
end
end)
self.flattenParams = true
end
function DataParallelTable:getParameters()
self:flattenParameters()
return table.unpack(self.flattenedParams[1])
end
local function hasFlattenedParameters(self)
if not self.flattenedParams then
return false
end
for _, param in ipairs(self.modules[1]:parameters()) do
if param:storage() ~= self.flattenedParams[1][1]:storage() then
return false
end
end
return true
end
function DataParallelTable:training()
self.impl:exec(function(module)
module:training()
end)
parent.training(self)
end
function DataParallelTable:evaluate()
self.impl:exec(function(module)
module:evaluate()
end)
parent.evaluate(self)
end
function DataParallelTable:clearState()
self.impl:exec(function(module)
module:clearState()
end)
return parent.clearState(self)
end
local function _hasData(input)
if torch.isTensor(input) then
return input:numel() ~= 0
else
assert(type(input) == 'table')
for i = 1, #input do
if _hasData(input[i]) then
return true
end
end
return false
end
end
function DataParallelTable:updateOutput(input)
if self.flattenParams and not hasFlattenedParameters(self) then
self:flattenParameters()
end
if self.needsSync then
self:syncParameters()
end
local prevGpuid = cutorch.getDevice()
-- distribute the input to GPUs
self:_distribute(self.inputGpu, input)
-- update output for each module
local inputGpu = self.inputGpu
self.outputGpu = self.impl:exec(function(m, i)
if _hasData(inputGpu[i]) then
return m:updateOutput(inputGpu[i])
else
return inputGpu[i]
end
end)
-- concatenate the outputs to the base GPU
self.output = self:_concat(self.output, self.outputGpu)
cutorch.setDevice(prevGpuid)
return self.output
end
function DataParallelTable:moduleParameters()
-- Returns a table containing the parameters for each replica
if self.flattenedParams then
local res = {}
for i, params in ipairs(self.flattenedParams) do
res[i] = { {params[1]}, {params[2]} }
end
return res
end
return self.impl:exec(function(m)
return { m:parameters() }
end)
end
function DataParallelTable:__backward(method, input, gradOutput, scale)
local prevGpuid = cutorch.getDevice()
local inputGpu, gradOutputGpu = self.inputGpu, self.gradOutputGpu
if method == 'backward' or method == 'updateGradInput' then
-- distribute the gradOutput to GPUs
self:_distribute(self.gradOutputGpu, gradOutput)
self.gradInputGpu = self.impl:exec(function(m, i)
if torch.isTensor(inputGpu[i]) and inputGpu[i]:numel() == 0 then
return torch.CudaTensor()
else
return m[method](m, inputGpu[i], gradOutputGpu[i], scale)
end
end)
if self.gradInput then
-- concatenate the gradInput to the base GPU
self.gradInput = self:_concat(self.gradInput, self.gradInputGpu)
end
end
if method == 'accGradParameters' then
self.impl:exec(function(m, i)
if torch.isTensor(inputGpu[i]) and inputGpu[i]:numel() == 0 then
return torch.CudaTensor()
else
return m:accGradParameters(inputGpu[i], gradOutputGpu[i], scale)
end
end)
end
if method == 'backward' or method == 'accGradParameters' then
local params = self:moduleParameters()
-- Accumulate the gradients onto the base GPU
if self.flattenedParams and self.usenccl and not cudaLaunchBlocking then
if #self.gpuAssignments > 1 then
nccl.reduce(pluck(self.flattenedParams, 2), nil, true, 1)
end
else
self:_reduce(pluck(params, 2))
end
-- Zero out gradients on the other GPUs
for i = 2, #self.gpuAssignments do
cutorch.setDevice(self.gpuAssignments[i])
for _, gradParam in ipairs(params[i][2]) do
gradParam:zero()
end
end
self.needsSync = true
end
cutorch.setDevice(prevGpuid)
return self.gradInput
end
function DataParallelTable:backward(input, gradOutput, scale)
return self:__backward('backward', input, gradOutput, scale)
end
function DataParallelTable:updateGradInput(input, gradOutput)
return self:__backward('updateGradInput', input, gradOutput)
end
function DataParallelTable:accGradParameters(input, gradOutput, scale)
self:__backward('accGradParameters', input, gradOutput, scale)
end
function DataParallelTable:syncParameters()
local prevGpuid = cutorch.getDevice()
if self.flattenedParams and self.usenccl and not cudaLaunchBlocking then
if #self.gpuAssignments > 1 then
nccl.bcast(pluck(self.flattenedParams, 1), true, 1)
end
else
self:_broadcast(pluck(self:moduleParameters(), 1))
end
self.needsSync = false
cutorch.setDevice(prevGpuid)
end
function DataParallelTable:accUpdateGradParameters(input, gradOutput, lr)
error("accUpdateGradParameters not supported for DataParallelTable.")
end
function DataParallelTable:zeroGradParameters()
local prevGpuid = cutorch.getDevice()
if self.flattenedParams then
for i, parameters in ipairs(self.flattenedParams) do
cutorch.setDevice(self.gpuAssignments[i])
parameters[2]:zero()
end
else
self.impl:exec(function(m)
m:zeroGradParameters()
end)
end
cutorch.setDevice(prevGpuid)
end
function DataParallelTable:updateParameters(learningRate)
local prevGpuid = cutorch.getDevice()
cutorch.setDevice(self.gpuAssignments[1])
self.modules[1]:updateParameters(learningRate)
self:syncParameters()
cutorch.setDevice(prevGpuid)
end
function DataParallelTable:parameters()
return self.modules[1]:parameters()
end
function DataParallelTable:share(mlp,...)
error("Share not supported for DataParallelTable")
end
function DataParallelTable:clone(...)
assert(select('#',...) == 0, "Sharing not supported for DataParallelTable")
return parent.clone(self)
end
function DataParallelTable:reset(stdv)
local prevGpuid = cutorch.getDevice()
cutorch.setDevice(self.gpuAssignments[1])
self.modules[1]:reset(stdv)
self:syncParameters()
cutorch.setDevice(prevGpuid)
end
function DataParallelTable:type(typeStr)
assert(typeStr == 'torch.CudaTensor', 'DataParallelTable supports only torch.CudaTensor type')
for i, m in ipairs(self.modules) do
m:type(typeStr)
end
return self
end
-- Backward compatibility purposes
DataParallelTable.__version = 3
-- DataParallelTable.deserializeNGPUs controls how many GPUs to deserialize
-- upon, otherwise will deserialize to as many GPUs as serialized and error
-- out if it doesn;t have enough available
function DataParallelTable:__read(file, version)
if version < 2 then
local var = file:readObject()
for k, v in pairs(var) do
self[k] = v
end
self.impl = self.impl or Impls.Basic(self)
return
end
-- Pre-read gpuAssignments and either use them of ignore them depending on
-- whether DataParallelTable.deserializeNGPUs is set.
local gpuAssignments = file:readObject()
if DataParallelTable.deserializeNGPUs then
gpuAssignments = {}
for i = 1, DataParallelTable.deserializeNGPUs do gpuAssignments[i] = i end
if DataParallelTable.deserializeNGPUs > cutorch.getDeviceCount() then
error('Deserialization requested on too many GPUs: ' ..
DataParallelTable.deserializeNGPUs .. ' vs ' ..
cutorch.getDeviceCount() .. ' available')
end
end
-- If DataParallelTable.deserializeNGPUs, deserialization overrides
-- gpu assignments anyway. If not, we need as many GPUs as the max,
-- there may be holes.
local nGPUs = math.max(unpack(gpuAssignments))
if nGPUs > cutorch.getDeviceCount() then
error('Model was serialized on ' ..
math.max(unpack(gpuAssignments)) ..
' nGPUs, but you are running on ' .. cutorch.getDeviceCount() ..
' please set DataParallelTable.deserializeNGPUs to ignore ' ..
' serialized tower-GPU assignments')
end
local prevGpuid = cutorch.getDevice()
cutorch.setDevice(gpuAssignments[1])
-- Deserialize from table
local var = file:readObject()
for k, v in pairs(var) do
self[k] = v
end
cutorch.setDevice(prevGpuid)
if self.usenccl then
self.usenccl = pcall(require, 'nccl')
end
if not self.impl then
self.impl = Impls.Basic(self)
end
-- use previously deserialize / recomputed gpuAssignments
self.gpuAssignments = gpuAssignments
assert(#self.modules == 1)
local flattenedParams = self.flattenedParams
if flattenedParams then
self.flattenedParams = self.impl:exec(function(m, i)
if i == 1 then
return flattenedParams[1]
else
return { m:getParameters() }
end
end)
end
end
function DataParallelTable:__write(file)
-- Prewrite the current assignments, we may need them to
-- deserialize the first tower
file:writeObject(self.gpuAssignments)
-- Convert to table
local t = {}
for k, v in pairs(self) do
-- Only keep the flattenedParams from the first module
if k == 'flattenedParams' then
t[k] = {v[1]}
elseif k == 'inputGpu' or k == 'outputGpu' or k == 'gradInputGpu' or k == 'gradOutputGpu' then
t[k] = {}
elseif k == 'buffer' then
t[k] = nil
else
t[k] = v
end
end
file:writeObject(t)
-- Force synchronization, this keeps you honest
self:syncParameters()
end
function DataParallelTable:_reflattenReplicaParameters()
local flattenedParams = self.flattenedParams
if flattenedParams then
self.flattenedParams = self.impl:exec(function(m, i)
if i == 1 then
return flattenedParams[1]
else
return { m:getParameters() }
end
end)
end
end
function DataParallelTable:apply(callback)
parent.apply(self, callback)
self.impl:applyChanges()
self:_reflattenReplicaParameters()
end
local function sliceRange(nElem, idx, splits)
local eltsPerMod = nElem / splits
local rangeStart = math.ceil((idx - 1) * eltsPerMod) + 1
if idx == splits then
return rangeStart, nElem - rangeStart + 1
else
return rangeStart, math.ceil(idx * eltsPerMod) - rangeStart + 1
end
end
local function sumSizes(tensors, dim)
local size
for i=1,#tensors do
if tensors[i]:numel() > 0 then
if size then
size[dim] = size[dim] + tensors[i]:size(dim)
else
size = tensors[i]:size()
end
end
end
return size
end
-- Copies the parameters from the first replica to all other replicas
function DataParallelTable:_broadcast(params)
for moduleIdx = 2, #params do
for paramIdx = 1, #params[moduleIdx] do
params[moduleIdx][paramIdx]:copy(params[1][paramIdx])
end
waitForDevice(self.gpuAssignments[moduleIdx], self.gpuAssignments[1])
end
end
-- Sums all the gradParams on to the first replica
function DataParallelTable:_reduce(gradParams)
local dstGpuid = self.gpuAssignments[1]
cutorch.setDevice(dstGpuid)
self.buffer = self.buffer or torch.CudaTensor()
for moduleIdx = 2, #gradParams do
for paramIdx = 1, #gradParams[moduleIdx] do
local dst = gradParams[1][paramIdx]
local src = gradParams[moduleIdx][paramIdx]
-- Synchronize before and after copy to ensure that it doesn't overlap
-- with this add or previous adds
waitForDevice(self.gpuAssignments[moduleIdx], dstGpuid)
self.buffer:resizeAs(src):copy(src)
waitForDevice(dstGpuid, self.gpuAssignments[moduleIdx])
dst:add(self.buffer)
end
end
end
function DataParallelTable:_distribute(dst, src)
for i = 1, #self.gpuAssignments do
cutorch.setDevice(self.gpuAssignments[i])
dst[i] = self:_distributeTensorRecursive(dst[i], src, i, #self.gpuAssignments)
end
end
-- _distributeTensorRecursive - if the src is a tensor then the function slices
-- it long self.dimension and copies each portion into each child module.
-- Otherwise it does a recursive call on tables.
function DataParallelTable:_distributeTensorRecursive(dst, src, idx, n)
if torch.type(src) == 'table' then
if torch.type(dst) ~= 'table' or #src ~= #dst then
dst = {}
end
-- Recurse on the table
for i, s in ipairs(src) do
dst[i] = self:_distributeTensorRecursive(dst[i], s, idx, n)
end
return dst
end
assert(torch.isTensor(src), 'input must be a tensor or table of tensors')
assert(src:type() == 'torch.CudaTensor' or src:type() == 'torch.FloatTensor',
'input must be a CUDA or Float tensor')
dst = torch.type(dst) == 'torch.CudaTensor' and dst or torch.CudaTensor()
local srcsize = src:dim() > 0 and src:size(self.dimension) or 0
local index, size = sliceRange(srcsize, idx, n)
if size == 0 then
dst:resize(0)
else
local slice = src:narrow(self.dimension, index, size)
dst:resize(slice:size()):copyAsync(slice)
if slice.getDevice then
waitForDevice(dst:getDevice(), slice:getDevice())
end
end
return dst
end
-- _concat - if the src is a tensor then the function copies it
-- into the dst slice along self.dimension.
-- Otherwise it does a recursive call on tables.
function DataParallelTable:_concat(dst, src)
dst = self:_concatTensorRecursive(dst, src)
for i=2,#self.gpuAssignments do
waitForDevice(self.gpuAssignments[1], self.gpuAssignments[i])
end
return dst
end
function DataParallelTable:_concatTensorRecursive(dst, src)
if torch.type(src[1]) == 'table' then
if torch.type(dst) ~= 'table' or #src[1] ~= #dst then
dst = {}
end
for i, _ in ipairs(src[1]) do
dst[i] = self:_concatTensorRecursive(dst[i], pluck(src, i))
end
return dst
end
assert(torch.isTensor(src[1]), 'input must be a tensor or table of tensors')
cutorch.setDevice(self.gpuAssignments[1])
dst = torch.type(dst) == 'torch.CudaTensor' and dst or torch.CudaTensor()
local cumsum = sumSizes(src, self.dimension)
if cumsum == nil then return dst end
dst:resize(cumsum)
local start = 1
for i, s in ipairs(src) do
if torch.numel(s) > 0 then
local sz = s:size(self.dimension)
dst:narrow(self.dimension, start, sz):copy(s)
start = start + sz
end
end
return dst
end
-- Single-thread dispatch
function BasicImpl:__init(dpt)
self.dpt = dpt
end
-- Re-copies the first replica onto all the other GPUs, if already setup
function BasicImpl:applyChanges()
if self.modules then
local prevGpuid = cutorch.getDevice()
self.modules = { self.dpt.modules[1] }
collectgarbage()
for i=2,#self.dpt.gpuAssignments do
cutorch.setDevice(self.dpt.gpuAssignments[i])
table.insert(self.modules, self.dpt.modules[1]:clone())
end
cutorch.setDevice(prevGpuid)
end
end
-- Copies the first replica onto all the other GPUs, if necessary
function BasicImpl:setup()
if not self.modules then
self.modules = {}
self:applyChanges()
end
end
-- Applies a function to each replica, combining the results into a table
function BasicImpl:exec(closure)
local prevGpuid = cutorch.getDevice()
self:setup()
local res = {}
for i, gpu in ipairs(self.dpt.gpuAssignments) do
cutorch.setDevice(gpu)
res[i] = closure(self.modules[i], i)
end
cutorch.setDevice(prevGpuid)
return res
end
function BasicImpl:__write(file)
local t = {}
for k, v in pairs(self) do
if k ~= 'modules' then
t[k] = v
end
end
file:writeObject(t)
end
function BasicImpl:close()
self.modules = nil
end
-- Multi-threaded dispatch
function ThreadsImpl:__init(dpt, initFunc)
self.dpt = dpt
self.initFunc = initFunc
end
function ThreadsImpl:applyChanges()
if self.__threads then
local module = self.dpt.modules[1]
for i, gpu in ipairs(self.dpt.gpuAssignments) do
self.__threads:addjob(i, function()
cutorch.setDevice(gpu)
if i == 1 then
_G.module = module
else
_G.module = nil
collectgarbage()
_G.module = module:clone()
end
end)
end
self.__threads:synchronize()
end
end
function ThreadsImpl:setup()
if not self.__threads then
local threads = require 'threads'
threads.Threads.serialization('threads.sharedserialize')
self.__threads = threads.Threads(
#self.dpt.gpuAssignments,
function() require 'cunn' end,
self.initFunc)
self.__threads:specific(true)
self:applyChanges()
end
end
function ThreadsImpl:exec(closure)
self:setup()
local res = {}
for i=1,#self.dpt.gpuAssignments do
self.__threads:addjob(i,
function()
return closure(_G.module, i)
end,
function (_res_)
res[i] = _res_
end)
end
self.__threads:synchronize()
return res
end
function ThreadsImpl:close()
self.__threads:terminate()
self.__threads = nil
end
function ThreadsImpl:__write(file)
local t = {}
for k, v in pairs(self) do
if k ~= '__threads' then
t[k] = v
end
end
file:writeObject(t)
end