-
Notifications
You must be signed in to change notification settings - Fork 2
/
labelme2COCO.py
202 lines (181 loc) · 7.16 KB
/
labelme2COCO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding:utf-8 -*-
# !/usr/bin/env python
import argparse
import json
import matplotlib.pyplot as plt
import skimage.io as io
import cv2
from labelme import utils
import numpy as np
import glob
import PIL.Image
class labelme2coco(object):
def __init__(self, labelme_json=None, save_json_path='./new.json'):
"""
:param labelme_json: 所有labelme的json文件路径组成的列表
:param save_json_path: json保存位置
"""
self.labelme_json = labelme_json
self.save_json_path = save_json_path
self.images = []
self.categories = []
self.annotations = []
# self.data_coco = {}
self.label = []
self.annID = 1
self.height = 0
self.width = 0
self.data_coco = None
self.save_json()
def data_transfer(self):
"""
遍历所有labelme生成的json文件,进行COCO数据格式的转换
:return: 无
"""
for num, json_file in enumerate(self.labelme_json):
with open(json_file, 'r') as fp:
data = json.load(fp) # 加载json文件
self.images.append(self.image(data, num))
for shapes in data['shapes']:
label = shapes['label'].split('_')
if label[1] not in self.label:
self.categories.append(self.categorie(label))
self.label.append(label[1])
points = shapes['points']
self.annotations.append(self.annotation(points, label, num))
self.annID += 1
print(self.annID)
def image(self, data, num):
"""
获取图片基本信息
:param data: json格式标注文件转换后的Python标准字典
:param num: 索引
:return: image字典, keys: height, width, id, file_name
"""
image = {}
img = utils.img_b64_to_arr(data['imageData']) # 解析原图片数据
# img=io.imread(data['imagePath']) # 通过图片路径打开图片
# img = cv2.imread(data['imagePath'], 0)
height, width = img.shape[:2]
img = None
image['height'] = height
image['width'] = width
image['id'] = num + 1
image['file_name'] = data['imagePath'].split('/')[-1]
self.height = height
self.width = width
return image
def categorie(self, label):
"""
获取图片种类信息
:param label: 按照"_"分割之后的字符串列表
:return: categorie字典, keys: id, name, supercategory
"""
categorie = dict()
categorie['supercategory'] = label[0]
categorie['id'] = len(self.label) + 1 # 0 默认为背景
categorie['name'] = label[1]
return categorie
def annotation(self, points, label, num):
"""
获取图片标注信息
:param points: 标注区域点的集合
:param label: 按照"_"分割之后的字符串列表
:param num: 索引
:return: annotation字典, keys: id, iamge_id, category_id, segmentation, bbox, iscrowd
"""
annotation = dict()
annotation['segmentation'] = [eval(str(list(np.asarray(points, dtype=np.float32).flatten())))]
annotation['iscrowd'] = 0
annotation['image_id'] = num + 1
# annotation['bbox'] = str(self.getbbox(points)) # 使用list保存json文件时报错(不知道为什么)
# list(map(int,a[1:-1].split(','))) a=annotation['bbox'] 使用该方式转成list
annotation['bbox'] = list(map(float, self.getbbox(points)))
annotation['category_id'] = self.getcatid(label)
annotation['id'] = self.annID
annotation['area'] = self.poly_area(points)
return annotation
def getcatid(self, label):
"""
获取标签对应的categoriy_id
:param label: 按照"_"分割之后的字符串列表
:return:
"""
for categorie in self.categories:
if label[1] == categorie['name']:
return categorie['id']
return -1
def getbbox(self, points):
"""
获取标注区域点所对应的bounding_box
:param points: 标注区域点的集合
:return: [x1, y1, w, h]
"""
# img = np.zeros([self.height,self.width],np.uint8)
# cv2.polylines(img, [np.asarray(points)], True, 1, lineType=cv2.LINE_AA) # 画边界线
# cv2.fillPoly(img, [np.asarray(points)], 1) # 画多边形 内部像素值为1
polygons = points
mask = self.polygons_to_mask([self.height, self.width], polygons)
return self.mask2box(mask)
def mask2box(self, mask):
"""从mask反算出其边框
mask:[h,w] 0、1组成的图片
1对应对象,只需计算1对应的行列号(左上角行列号,右下角行列号,就可以算出其边框)
"""
# np.where(mask==1)
index = np.argwhere(mask == 1)
rows = index[:, 0]
clos = index[:, 1]
# 解析左上角行列号
left_top_r = np.min(rows) # y
left_top_c = np.min(clos) # x
# 解析右下角行列号
right_bottom_r = np.max(rows)
right_bottom_c = np.max(clos)
# return [(left_top_r,left_top_c),(right_bottom_r,right_bottom_c)]
# return [(left_top_c, left_top_r), (right_bottom_c, right_bottom_r)]
# return [left_top_c, left_top_r, right_bottom_c, right_bottom_r] # [x1,y1,x2,y2]
return [left_top_c, left_top_r, right_bottom_c - left_top_c,
right_bottom_r - left_top_r] # [x1,y1,w,h] 对应COCO的bbox格式
def polygons_to_mask(self, img_shape, polygons):
"""
将组成多边形点的列表转换为掩膜
:param img_shape: 图片的形状
:param polygons: 组成多边形点的列表
:return: 掩膜
"""
mask = np.zeros(img_shape, dtype=np.uint8)
mask = PIL.Image.fromarray(mask)
xy = list(map(tuple, polygons))
PIL.ImageDraw.Draw(mask).polygon(xy=xy, outline=1, fill=1)
mask = np.array(mask, dtype=bool)
return mask
def data2coco(self):
"""
将数据封装成为coco格式
:return: data_coco, coco格式的数据
"""
data_coco = dict()
data_coco['images'] = self.images
data_coco['categories'] = self.categories
data_coco['annotations'] = self.annotations
return data_coco
def save_json(self):
self.data_transfer()
self.data_coco = self.data2coco()
# 保存json文件
json.dump(self.data_coco, open(self.save_json_path, 'w'), indent=4) # indent=4 更加美观显示
def poly_area(self, points):
"""
计算多边形面积
:param points: 标注文件中points列表
:return: 对应多边形面积
"""
x_list = [coord[0] for coord in points]
y_list = [coord[1] for coord in points]
x = np.array(x_list)
y = np.array(y_list)
return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))
labelme_json = glob.glob('./*.json')
# labelme_json=['./1.json']
labelme2coco(labelme_json, './new.json')