-
Notifications
You must be signed in to change notification settings - Fork 507
/
metrics.py
970 lines (816 loc) · 29.3 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
import io
import os
import random
import re
import sys
import threading
import time
import warnings
import zlib
from abc import ABC, abstractmethod
from contextlib import contextmanager
from datetime import datetime, timezone
from functools import wraps, partial
import sentry_sdk
from sentry_sdk.utils import (
ContextVar,
now,
nanosecond_time,
to_timestamp,
serialize_frame,
json_dumps,
)
from sentry_sdk.envelope import Envelope, Item
from sentry_sdk.tracing import (
TRANSACTION_SOURCE_ROUTE,
TRANSACTION_SOURCE_VIEW,
TRANSACTION_SOURCE_COMPONENT,
TRANSACTION_SOURCE_TASK,
)
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from typing import Any
from typing import Callable
from typing import Dict
from typing import Generator
from typing import Iterable
from typing import List
from typing import Optional
from typing import Set
from typing import Tuple
from typing import Union
from sentry_sdk._types import BucketKey
from sentry_sdk._types import DurationUnit
from sentry_sdk._types import FlushedMetricValue
from sentry_sdk._types import MeasurementUnit
from sentry_sdk._types import MetricMetaKey
from sentry_sdk._types import MetricTagValue
from sentry_sdk._types import MetricTags
from sentry_sdk._types import MetricTagsInternal
from sentry_sdk._types import MetricType
from sentry_sdk._types import MetricValue
warnings.warn(
"The sentry_sdk.metrics module is deprecated and will be removed in the next major release. "
"Sentry will reject all metrics sent after October 7, 2024. "
"Learn more: https://sentry.zendesk.com/hc/en-us/articles/26369339769883-Upcoming-API-Changes-to-Metrics",
DeprecationWarning,
stacklevel=2,
)
_in_metrics = ContextVar("in_metrics", default=False)
_set = set # set is shadowed below
GOOD_TRANSACTION_SOURCES = frozenset(
[
TRANSACTION_SOURCE_ROUTE,
TRANSACTION_SOURCE_VIEW,
TRANSACTION_SOURCE_COMPONENT,
TRANSACTION_SOURCE_TASK,
]
)
_sanitize_unit = partial(re.compile(r"[^a-zA-Z0-9_]+").sub, "")
_sanitize_metric_key = partial(re.compile(r"[^a-zA-Z0-9_\-.]+").sub, "_")
_sanitize_tag_key = partial(re.compile(r"[^a-zA-Z0-9_\-.\/]+").sub, "")
def _sanitize_tag_value(value):
# type: (str) -> str
table = str.maketrans(
{
"\n": "\\n",
"\r": "\\r",
"\t": "\\t",
"\\": "\\\\",
"|": "\\u{7c}",
",": "\\u{2c}",
}
)
return value.translate(table)
def get_code_location(stacklevel):
# type: (int) -> Optional[Dict[str, Any]]
try:
frm = sys._getframe(stacklevel)
except Exception:
return None
return serialize_frame(
frm, include_local_variables=False, include_source_context=True
)
@contextmanager
def recursion_protection():
# type: () -> Generator[bool, None, None]
"""Enters recursion protection and returns the old flag."""
old_in_metrics = _in_metrics.get()
_in_metrics.set(True)
try:
yield old_in_metrics
finally:
_in_metrics.set(old_in_metrics)
def metrics_noop(func):
# type: (Any) -> Any
"""Convenient decorator that uses `recursion_protection` to
make a function a noop.
"""
@wraps(func)
def new_func(*args, **kwargs):
# type: (*Any, **Any) -> Any
with recursion_protection() as in_metrics:
if not in_metrics:
return func(*args, **kwargs)
return new_func
class Metric(ABC):
__slots__ = ()
@abstractmethod
def __init__(self, first):
# type: (MetricValue) -> None
pass
@property
@abstractmethod
def weight(self):
# type: () -> int
pass
@abstractmethod
def add(self, value):
# type: (MetricValue) -> None
pass
@abstractmethod
def serialize_value(self):
# type: () -> Iterable[FlushedMetricValue]
pass
class CounterMetric(Metric):
__slots__ = ("value",)
def __init__(
self, first # type: MetricValue
):
# type: (...) -> None
self.value = float(first)
@property
def weight(self):
# type: (...) -> int
return 1
def add(
self, value # type: MetricValue
):
# type: (...) -> None
self.value += float(value)
def serialize_value(self):
# type: (...) -> Iterable[FlushedMetricValue]
return (self.value,)
class GaugeMetric(Metric):
__slots__ = (
"last",
"min",
"max",
"sum",
"count",
)
def __init__(
self, first # type: MetricValue
):
# type: (...) -> None
first = float(first)
self.last = first
self.min = first
self.max = first
self.sum = first
self.count = 1
@property
def weight(self):
# type: (...) -> int
# Number of elements.
return 5
def add(
self, value # type: MetricValue
):
# type: (...) -> None
value = float(value)
self.last = value
self.min = min(self.min, value)
self.max = max(self.max, value)
self.sum += value
self.count += 1
def serialize_value(self):
# type: (...) -> Iterable[FlushedMetricValue]
return (
self.last,
self.min,
self.max,
self.sum,
self.count,
)
class DistributionMetric(Metric):
__slots__ = ("value",)
def __init__(
self, first # type: MetricValue
):
# type(...) -> None
self.value = [float(first)]
@property
def weight(self):
# type: (...) -> int
return len(self.value)
def add(
self, value # type: MetricValue
):
# type: (...) -> None
self.value.append(float(value))
def serialize_value(self):
# type: (...) -> Iterable[FlushedMetricValue]
return self.value
class SetMetric(Metric):
__slots__ = ("value",)
def __init__(
self, first # type: MetricValue
):
# type: (...) -> None
self.value = {first}
@property
def weight(self):
# type: (...) -> int
return len(self.value)
def add(
self, value # type: MetricValue
):
# type: (...) -> None
self.value.add(value)
def serialize_value(self):
# type: (...) -> Iterable[FlushedMetricValue]
def _hash(x):
# type: (MetricValue) -> int
if isinstance(x, str):
return zlib.crc32(x.encode("utf-8")) & 0xFFFFFFFF
return int(x)
return (_hash(value) for value in self.value)
def _encode_metrics(flushable_buckets):
# type: (Iterable[Tuple[int, Dict[BucketKey, Metric]]]) -> bytes
out = io.BytesIO()
_write = out.write
# Note on sanitization: we intentionally sanitize in emission (serialization)
# and not during aggregation for performance reasons. This means that the
# envelope can in fact have duplicate buckets stored. This is acceptable for
# relay side emission and should not happen commonly.
for timestamp, buckets in flushable_buckets:
for bucket_key, metric in buckets.items():
metric_type, metric_name, metric_unit, metric_tags = bucket_key
metric_name = _sanitize_metric_key(metric_name)
metric_unit = _sanitize_unit(metric_unit)
_write(metric_name.encode("utf-8"))
_write(b"@")
_write(metric_unit.encode("utf-8"))
for serialized_value in metric.serialize_value():
_write(b":")
_write(str(serialized_value).encode("utf-8"))
_write(b"|")
_write(metric_type.encode("ascii"))
if metric_tags:
_write(b"|#")
first = True
for tag_key, tag_value in metric_tags:
tag_key = _sanitize_tag_key(tag_key)
if not tag_key:
continue
if first:
first = False
else:
_write(b",")
_write(tag_key.encode("utf-8"))
_write(b":")
_write(_sanitize_tag_value(tag_value).encode("utf-8"))
_write(b"|T")
_write(str(timestamp).encode("ascii"))
_write(b"\n")
return out.getvalue()
def _encode_locations(timestamp, code_locations):
# type: (int, Iterable[Tuple[MetricMetaKey, Dict[str, Any]]]) -> bytes
mapping = {} # type: Dict[str, List[Any]]
for key, loc in code_locations:
metric_type, name, unit = key
mri = "{}:{}@{}".format(
metric_type, _sanitize_metric_key(name), _sanitize_unit(unit)
)
loc["type"] = "location"
mapping.setdefault(mri, []).append(loc)
return json_dumps({"timestamp": timestamp, "mapping": mapping})
METRIC_TYPES = {
"c": CounterMetric,
"g": GaugeMetric,
"d": DistributionMetric,
"s": SetMetric,
} # type: dict[MetricType, type[Metric]]
# some of these are dumb
TIMING_FUNCTIONS = {
"nanosecond": nanosecond_time,
"microsecond": lambda: nanosecond_time() / 1000.0,
"millisecond": lambda: nanosecond_time() / 1000000.0,
"second": now,
"minute": lambda: now() / 60.0,
"hour": lambda: now() / 3600.0,
"day": lambda: now() / 3600.0 / 24.0,
"week": lambda: now() / 3600.0 / 24.0 / 7.0,
}
class LocalAggregator:
__slots__ = ("_measurements",)
def __init__(self):
# type: (...) -> None
self._measurements = (
{}
) # type: Dict[Tuple[str, MetricTagsInternal], Tuple[float, float, int, float]]
def add(
self,
ty, # type: MetricType
key, # type: str
value, # type: float
unit, # type: MeasurementUnit
tags, # type: MetricTagsInternal
):
# type: (...) -> None
export_key = "%s:%s@%s" % (ty, key, unit)
bucket_key = (export_key, tags)
old = self._measurements.get(bucket_key)
if old is not None:
v_min, v_max, v_count, v_sum = old
v_min = min(v_min, value)
v_max = max(v_max, value)
v_count += 1
v_sum += value
else:
v_min = v_max = v_sum = value
v_count = 1
self._measurements[bucket_key] = (v_min, v_max, v_count, v_sum)
def to_json(self):
# type: (...) -> Dict[str, Any]
rv = {} # type: Any
for (export_key, tags), (
v_min,
v_max,
v_count,
v_sum,
) in self._measurements.items():
rv.setdefault(export_key, []).append(
{
"tags": _tags_to_dict(tags),
"min": v_min,
"max": v_max,
"count": v_count,
"sum": v_sum,
}
)
return rv
class MetricsAggregator:
ROLLUP_IN_SECONDS = 10.0
MAX_WEIGHT = 100000
FLUSHER_SLEEP_TIME = 5.0
def __init__(
self,
capture_func, # type: Callable[[Envelope], None]
enable_code_locations=False, # type: bool
):
# type: (...) -> None
self.buckets = {} # type: Dict[int, Any]
self._enable_code_locations = enable_code_locations
self._seen_locations = _set() # type: Set[Tuple[int, MetricMetaKey]]
self._pending_locations = {} # type: Dict[int, List[Tuple[MetricMetaKey, Any]]]
self._buckets_total_weight = 0
self._capture_func = capture_func
self._running = True
self._lock = threading.Lock()
self._flush_event = threading.Event() # type: threading.Event
self._force_flush = False
# The aggregator shifts its flushing by up to an entire rollup window to
# avoid multiple clients trampling on end of a 10 second window as all the
# buckets are anchored to multiples of ROLLUP seconds. We randomize this
# number once per aggregator boot to achieve some level of offsetting
# across a fleet of deployed SDKs. Relay itself will also apply independent
# jittering.
self._flush_shift = random.random() * self.ROLLUP_IN_SECONDS
self._flusher = None # type: Optional[threading.Thread]
self._flusher_pid = None # type: Optional[int]
def _ensure_thread(self):
# type: (...) -> bool
"""For forking processes we might need to restart this thread.
This ensures that our process actually has that thread running.
"""
if not self._running:
return False
pid = os.getpid()
if self._flusher_pid == pid:
return True
with self._lock:
# Recheck to make sure another thread didn't get here and start the
# the flusher in the meantime
if self._flusher_pid == pid:
return True
self._flusher_pid = pid
self._flusher = threading.Thread(target=self._flush_loop)
self._flusher.daemon = True
try:
self._flusher.start()
except RuntimeError:
# Unfortunately at this point the interpreter is in a state that no
# longer allows us to spawn a thread and we have to bail.
self._running = False
return False
return True
def _flush_loop(self):
# type: (...) -> None
_in_metrics.set(True)
while self._running or self._force_flush:
if self._running:
self._flush_event.wait(self.FLUSHER_SLEEP_TIME)
self._flush()
def _flush(self):
# type: (...) -> None
self._emit(self._flushable_buckets(), self._flushable_locations())
def _flushable_buckets(self):
# type: (...) -> (Iterable[Tuple[int, Dict[BucketKey, Metric]]])
with self._lock:
force_flush = self._force_flush
cutoff = time.time() - self.ROLLUP_IN_SECONDS - self._flush_shift
flushable_buckets = () # type: Iterable[Tuple[int, Dict[BucketKey, Metric]]]
weight_to_remove = 0
if force_flush:
flushable_buckets = self.buckets.items()
self.buckets = {}
self._buckets_total_weight = 0
self._force_flush = False
else:
flushable_buckets = []
for buckets_timestamp, buckets in self.buckets.items():
# If the timestamp of the bucket is newer that the rollup we want to skip it.
if buckets_timestamp <= cutoff:
flushable_buckets.append((buckets_timestamp, buckets))
# We will clear the elements while holding the lock, in order to avoid requesting it downstream again.
for buckets_timestamp, buckets in flushable_buckets:
for metric in buckets.values():
weight_to_remove += metric.weight
del self.buckets[buckets_timestamp]
self._buckets_total_weight -= weight_to_remove
return flushable_buckets
def _flushable_locations(self):
# type: (...) -> Dict[int, List[Tuple[MetricMetaKey, Dict[str, Any]]]]
with self._lock:
locations = self._pending_locations
self._pending_locations = {}
return locations
@metrics_noop
def add(
self,
ty, # type: MetricType
key, # type: str
value, # type: MetricValue
unit, # type: MeasurementUnit
tags, # type: Optional[MetricTags]
timestamp=None, # type: Optional[Union[float, datetime]]
local_aggregator=None, # type: Optional[LocalAggregator]
stacklevel=0, # type: Optional[int]
):
# type: (...) -> None
if not self._ensure_thread() or self._flusher is None:
return None
if timestamp is None:
timestamp = time.time()
elif isinstance(timestamp, datetime):
timestamp = to_timestamp(timestamp)
bucket_timestamp = int(
(timestamp // self.ROLLUP_IN_SECONDS) * self.ROLLUP_IN_SECONDS
)
serialized_tags = _serialize_tags(tags)
bucket_key = (
ty,
key,
unit,
serialized_tags,
)
with self._lock:
local_buckets = self.buckets.setdefault(bucket_timestamp, {})
metric = local_buckets.get(bucket_key)
if metric is not None:
previous_weight = metric.weight
metric.add(value)
else:
metric = local_buckets[bucket_key] = METRIC_TYPES[ty](value)
previous_weight = 0
added = metric.weight - previous_weight
if stacklevel is not None:
self.record_code_location(ty, key, unit, stacklevel + 2, timestamp)
# Given the new weight we consider whether we want to force flush.
self._consider_force_flush()
# For sets, we only record that a value has been added to the set but not which one.
# See develop docs: https://develop.sentry.dev/sdk/metrics/#sets
if local_aggregator is not None:
local_value = float(added if ty == "s" else value)
local_aggregator.add(ty, key, local_value, unit, serialized_tags)
def record_code_location(
self,
ty, # type: MetricType
key, # type: str
unit, # type: MeasurementUnit
stacklevel, # type: int
timestamp=None, # type: Optional[float]
):
# type: (...) -> None
if not self._enable_code_locations:
return
if timestamp is None:
timestamp = time.time()
meta_key = (ty, key, unit)
start_of_day = datetime.fromtimestamp(timestamp, timezone.utc).replace(
hour=0, minute=0, second=0, microsecond=0, tzinfo=None
)
start_of_day = int(to_timestamp(start_of_day))
if (start_of_day, meta_key) not in self._seen_locations:
self._seen_locations.add((start_of_day, meta_key))
loc = get_code_location(stacklevel + 3)
if loc is not None:
# Group metadata by day to make flushing more efficient.
# There needs to be one envelope item per timestamp.
self._pending_locations.setdefault(start_of_day, []).append(
(meta_key, loc)
)
@metrics_noop
def need_code_location(
self,
ty, # type: MetricType
key, # type: str
unit, # type: MeasurementUnit
timestamp, # type: float
):
# type: (...) -> bool
if self._enable_code_locations:
return False
meta_key = (ty, key, unit)
start_of_day = datetime.fromtimestamp(timestamp, timezone.utc).replace(
hour=0, minute=0, second=0, microsecond=0, tzinfo=None
)
start_of_day = int(to_timestamp(start_of_day))
return (start_of_day, meta_key) not in self._seen_locations
def kill(self):
# type: (...) -> None
if self._flusher is None:
return
self._running = False
self._flush_event.set()
self._flusher = None
@metrics_noop
def flush(self):
# type: (...) -> None
self._force_flush = True
self._flush()
def _consider_force_flush(self):
# type: (...) -> None
# It's important to acquire a lock around this method, since it will touch shared data structures.
total_weight = len(self.buckets) + self._buckets_total_weight
if total_weight >= self.MAX_WEIGHT:
self._force_flush = True
self._flush_event.set()
def _emit(
self,
flushable_buckets, # type: (Iterable[Tuple[int, Dict[BucketKey, Metric]]])
code_locations, # type: Dict[int, List[Tuple[MetricMetaKey, Dict[str, Any]]]]
):
# type: (...) -> Optional[Envelope]
envelope = Envelope()
if flushable_buckets:
encoded_metrics = _encode_metrics(flushable_buckets)
envelope.add_item(Item(payload=encoded_metrics, type="statsd"))
for timestamp, locations in code_locations.items():
encoded_locations = _encode_locations(timestamp, locations)
envelope.add_item(Item(payload=encoded_locations, type="metric_meta"))
if envelope.items:
self._capture_func(envelope)
return envelope
return None
def _serialize_tags(
tags, # type: Optional[MetricTags]
):
# type: (...) -> MetricTagsInternal
if not tags:
return ()
rv = []
for key, value in tags.items():
# If the value is a collection, we want to flatten it.
if isinstance(value, (list, tuple)):
for inner_value in value:
if inner_value is not None:
rv.append((key, str(inner_value)))
elif value is not None:
rv.append((key, str(value)))
# It's very important to sort the tags in order to obtain the
# same bucket key.
return tuple(sorted(rv))
def _tags_to_dict(tags):
# type: (MetricTagsInternal) -> Dict[str, Any]
rv = {} # type: Dict[str, Any]
for tag_name, tag_value in tags:
old_value = rv.get(tag_name)
if old_value is not None:
if isinstance(old_value, list):
old_value.append(tag_value)
else:
rv[tag_name] = [old_value, tag_value]
else:
rv[tag_name] = tag_value
return rv
def _get_aggregator():
# type: () -> Optional[MetricsAggregator]
client = sentry_sdk.get_client()
return (
client.metrics_aggregator
if client.is_active() and client.metrics_aggregator is not None
else None
)
def _get_aggregator_and_update_tags(key, value, unit, tags):
# type: (str, Optional[MetricValue], MeasurementUnit, Optional[MetricTags]) -> Tuple[Optional[MetricsAggregator], Optional[LocalAggregator], Optional[MetricTags]]
client = sentry_sdk.get_client()
if not client.is_active() or client.metrics_aggregator is None:
return None, None, tags
updated_tags = dict(tags or ()) # type: Dict[str, MetricTagValue]
updated_tags.setdefault("release", client.options["release"])
updated_tags.setdefault("environment", client.options["environment"])
scope = sentry_sdk.get_current_scope()
local_aggregator = None
# We go with the low-level API here to access transaction information as
# this one is the same between just errors and errors + performance
transaction_source = scope._transaction_info.get("source")
if transaction_source in GOOD_TRANSACTION_SOURCES:
transaction_name = scope._transaction
if transaction_name:
updated_tags.setdefault("transaction", transaction_name)
if scope._span is not None:
local_aggregator = scope._span._get_local_aggregator()
experiments = client.options.get("_experiments", {})
before_emit_callback = experiments.get("before_emit_metric")
if before_emit_callback is not None:
with recursion_protection() as in_metrics:
if not in_metrics:
if not before_emit_callback(key, value, unit, updated_tags):
return None, None, updated_tags
return client.metrics_aggregator, local_aggregator, updated_tags
def increment(
key, # type: str
value=1.0, # type: float
unit="none", # type: MeasurementUnit
tags=None, # type: Optional[MetricTags]
timestamp=None, # type: Optional[Union[float, datetime]]
stacklevel=0, # type: int
):
# type: (...) -> None
"""Increments a counter."""
aggregator, local_aggregator, tags = _get_aggregator_and_update_tags(
key, value, unit, tags
)
if aggregator is not None:
aggregator.add(
"c", key, value, unit, tags, timestamp, local_aggregator, stacklevel
)
# alias as incr is relatively common in python
incr = increment
class _Timing:
def __init__(
self,
key, # type: str
tags, # type: Optional[MetricTags]
timestamp, # type: Optional[Union[float, datetime]]
value, # type: Optional[float]
unit, # type: DurationUnit
stacklevel, # type: int
):
# type: (...) -> None
self.key = key
self.tags = tags
self.timestamp = timestamp
self.value = value
self.unit = unit
self.entered = None # type: Optional[float]
self._span = None # type: Optional[sentry_sdk.tracing.Span]
self.stacklevel = stacklevel
def _validate_invocation(self, context):
# type: (str) -> None
if self.value is not None:
raise TypeError(
"cannot use timing as %s when a value is provided" % context
)
def __enter__(self):
# type: (...) -> _Timing
self.entered = TIMING_FUNCTIONS[self.unit]()
self._validate_invocation("context-manager")
self._span = sentry_sdk.start_span(op="metric.timing", name=self.key)
if self.tags:
for key, value in self.tags.items():
if isinstance(value, (tuple, list)):
value = ",".join(sorted(map(str, value)))
self._span.set_tag(key, value)
self._span.__enter__()
# report code locations here for better accuracy
aggregator = _get_aggregator()
if aggregator is not None:
aggregator.record_code_location("d", self.key, self.unit, self.stacklevel)
return self
def __exit__(self, exc_type, exc_value, tb):
# type: (Any, Any, Any) -> None
assert self._span, "did not enter"
aggregator, local_aggregator, tags = _get_aggregator_and_update_tags(
self.key,
self.value,
self.unit,
self.tags,
)
if aggregator is not None:
elapsed = TIMING_FUNCTIONS[self.unit]() - self.entered # type: ignore
aggregator.add(
"d",
self.key,
elapsed,
self.unit,
tags,
self.timestamp,
local_aggregator,
None, # code locations are reported in __enter__
)
self._span.__exit__(exc_type, exc_value, tb)
self._span = None
def __call__(self, f):
# type: (Any) -> Any
self._validate_invocation("decorator")
@wraps(f)
def timed_func(*args, **kwargs):
# type: (*Any, **Any) -> Any
with timing(
key=self.key,
tags=self.tags,
timestamp=self.timestamp,
unit=self.unit,
stacklevel=self.stacklevel + 1,
):
return f(*args, **kwargs)
return timed_func
def timing(
key, # type: str
value=None, # type: Optional[float]
unit="second", # type: DurationUnit
tags=None, # type: Optional[MetricTags]
timestamp=None, # type: Optional[Union[float, datetime]]
stacklevel=0, # type: int
):
# type: (...) -> _Timing
"""Emits a distribution with the time it takes to run the given code block.
This method supports three forms of invocation:
- when a `value` is provided, it functions similar to `distribution` but with
- it can be used as a context manager
- it can be used as a decorator
"""
if value is not None:
aggregator, local_aggregator, tags = _get_aggregator_and_update_tags(
key, value, unit, tags
)
if aggregator is not None:
aggregator.add(
"d", key, value, unit, tags, timestamp, local_aggregator, stacklevel
)
return _Timing(key, tags, timestamp, value, unit, stacklevel)
def distribution(
key, # type: str
value, # type: float
unit="none", # type: MeasurementUnit
tags=None, # type: Optional[MetricTags]
timestamp=None, # type: Optional[Union[float, datetime]]
stacklevel=0, # type: int
):
# type: (...) -> None
"""Emits a distribution."""
aggregator, local_aggregator, tags = _get_aggregator_and_update_tags(
key, value, unit, tags
)
if aggregator is not None:
aggregator.add(
"d", key, value, unit, tags, timestamp, local_aggregator, stacklevel
)
def set(
key, # type: str
value, # type: Union[int, str]
unit="none", # type: MeasurementUnit
tags=None, # type: Optional[MetricTags]
timestamp=None, # type: Optional[Union[float, datetime]]
stacklevel=0, # type: int
):
# type: (...) -> None
"""Emits a set."""
aggregator, local_aggregator, tags = _get_aggregator_and_update_tags(
key, value, unit, tags
)
if aggregator is not None:
aggregator.add(
"s", key, value, unit, tags, timestamp, local_aggregator, stacklevel
)
def gauge(
key, # type: str
value, # type: float
unit="none", # type: MeasurementUnit
tags=None, # type: Optional[MetricTags]
timestamp=None, # type: Optional[Union[float, datetime]]
stacklevel=0, # type: int
):
# type: (...) -> None
"""Emits a gauge."""
aggregator, local_aggregator, tags = _get_aggregator_and_update_tags(
key, value, unit, tags
)
if aggregator is not None:
aggregator.add(
"g", key, value, unit, tags, timestamp, local_aggregator, stacklevel
)