forked from ivanarh/libunwindstack-ndk
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Symbols.cpp
245 lines (229 loc) · 9.51 KB
/
Symbols.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <elf.h>
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <string>
#include <vector>
#include <unwindstack/Memory.h>
#include "Check.h"
#include "Symbols.h"
namespace unwindstack {
Symbols::Symbols(uint64_t offset, uint64_t size, uint64_t entry_size, uint64_t str_offset,
uint64_t str_size)
: offset_(offset),
count_(entry_size != 0 ? ((size / entry_size > kMaxSymbols) ? kMaxSymbols : size / entry_size)
: 0),
entry_size_(entry_size),
str_offset_(str_offset) {
if (__builtin_add_overflow(str_offset_, str_size, &str_end_)) {
// Set to the max so that the code will still try to get symbol names.
// Any reads that might be invalid will simply return no data, so
// this will not result in crashes.
// The assumption is that this value might have been corrupted, but
// enough of the elf data is valid such that the code can still
// get symbol information.
str_end_ = UINT64_MAX;
}
}
template <typename SymType>
static bool IsFunc(const SymType* entry) {
return entry->st_shndx != SHN_UNDEF && ELF32_ST_TYPE(entry->st_info) == STT_FUNC;
}
// Binary search the symbol table to find function containing the given address.
// Without remap, the symbol table is assumed to be sorted and accessed directly.
// If the symbol table is not sorted this method might fail but should not crash.
// When the indices are remapped, they are guaranteed to be sorted by address.
template <typename SymType, bool RemapIndices>
Symbols::Info* Symbols::BinarySearch(uint64_t addr, Memory* elf_memory, uint64_t* func_offset) {
// Fast-path: Check if the symbol has been already read from memory.
// Otherwise use the cache iterator to constrain the binary search range.
// (the symbol must be in the gap between this and the previous iterator)
auto it = symbols_.upper_bound(addr);
if (it != symbols_.end()) {
uint64_t sym_value = (it->first - it->second.size); // Function address.
if (sym_value <= addr) {
*func_offset = addr - sym_value;
return &it->second;
}
}
uint32_t count = RemapIndices ? remap_->size() : count_;
uint32_t last = (it != symbols_.end()) ? it->second.index : count;
uint32_t first = (it != symbols_.begin()) ? std::prev(it)->second.index + 1 : 0;
while (first < last) {
uint32_t current = first + (last - first) / 2;
uint32_t symbol_index = RemapIndices ? remap_.value()[current] : current;
uint64_t offset = symbol_index * entry_size_;
if (__builtin_add_overflow(offset, offset_, &offset)) {
// The elf data might be malformed.
return nullptr;
}
SymType sym;
if (!elf_memory->ReadFully(offset, &sym, sizeof(sym))) {
return nullptr;
}
// There shouldn't be multiple symbols with same end address, but in case there are,
// overwrite the cache with the last entry, so that 'sym' and 'info' are consistent.
Info& info = symbols_[sym.st_value + sym.st_size];
info = {.size = static_cast<uint32_t>(sym.st_size), .index = current};
if (addr < sym.st_value) {
last = current;
} else if (addr < sym.st_value + sym.st_size) {
*func_offset = addr - sym.st_value;
return &info;
} else {
first = current + 1;
}
}
return nullptr;
}
// Create remapping table which allows us to access symbols as if they were sorted by address.
template <typename SymType>
void Symbols::BuildRemapTable(Memory* elf_memory) {
std::vector<uint64_t> addrs; // Addresses of all symbols (addrs[i] == symbols[i].st_value).
addrs.reserve(count_);
remap_.emplace(); // Construct the optional remap table.
remap_->reserve(count_);
for (size_t symbol_idx = 0; symbol_idx < count_;) {
// Read symbols from memory. We intentionally bypass the cache to save memory.
// Do the reads in batches so that we minimize the number of memory read calls.
uint64_t read_bytes = (count_ - symbol_idx) * entry_size_;
uint8_t buffer[1024];
read_bytes = std::min<size_t>(sizeof(buffer), read_bytes);
uint64_t offset = symbol_idx * entry_size_;
if (__builtin_add_overflow(offset, offset_, &offset)) {
// The elf data might be malformed.
break;
}
read_bytes = elf_memory->Read(offset, buffer, read_bytes);
if (read_bytes < sizeof(SymType)) {
// The elf data might be malformed.
break;
}
for (uint64_t offset = 0; offset <= read_bytes - sizeof(SymType);
offset += entry_size_, symbol_idx++) {
SymType sym;
memcpy(&sym, &buffer[offset], sizeof(SymType)); // Copy to ensure alignment.
addrs.push_back(sym.st_value); // Always insert so it is indexable by symbol index.
// NB: It is important to filter our zero-sized symbols since otherwise we can get
// duplicate end addresses in the table (e.g. if there is custom "end" symbol marker).
if (IsFunc(&sym) && sym.st_size != 0) {
remap_->push_back(symbol_idx); // Indices of function symbols only.
}
}
}
// Sort by address to make the remap list binary searchable (stable due to the a<b tie break).
auto comp = [&addrs](auto a, auto b) { return std::tie(addrs[a], a) < std::tie(addrs[b], b); };
std::sort(remap_->begin(), remap_->end(), comp);
// Remove duplicate entries (methods de-duplicated by the linker).
auto pred = [&addrs](auto a, auto b) { return addrs[a] == addrs[b]; };
remap_->erase(std::unique(remap_->begin(), remap_->end(), pred), remap_->end());
remap_->shrink_to_fit();
}
template <typename SymType>
bool Symbols::GetName(uint64_t addr, Memory* elf_memory, SharedString* name,
uint64_t* func_offset) {
Info* info;
if (!remap_.has_value()) {
// Assume the symbol table is sorted. If it is not, this will gracefully fail.
info = BinarySearch<SymType, false>(addr, elf_memory, func_offset);
if (info == nullptr) {
// Create the remapping table and retry the search.
BuildRemapTable<SymType>(elf_memory);
symbols_.clear(); // Remove cached symbols since the access pattern will be different.
info = BinarySearch<SymType, true>(addr, elf_memory, func_offset);
}
} else {
// Fast search using the previously created remap table.
info = BinarySearch<SymType, true>(addr, elf_memory, func_offset);
}
if (info == nullptr) {
return false;
}
// Read and cache the symbol name.
if (info->name.is_null()) {
SymType sym;
uint32_t symbol_index = remap_.has_value() ? remap_.value()[info->index] : info->index;
uint64_t offset = symbol_index * entry_size_;
if (__builtin_add_overflow(offset, offset_, &offset)) {
// The elf data might be malformed.
return false;
}
if (!elf_memory->ReadFully(offset, &sym, sizeof(sym))) {
return false;
}
std::string symbol_name;
uint64_t str;
if (__builtin_add_overflow(str_offset_, sym.st_name, &str) || str >= str_end_) {
return false;
}
if (!IsFunc(&sym) || !elf_memory->ReadString(str, &symbol_name, str_end_ - str)) {
return false;
}
info->name = SharedString(std::move(symbol_name));
}
*name = info->name;
return true;
}
template <typename SymType>
bool Symbols::GetGlobal(Memory* elf_memory, const std::string& name, uint64_t* memory_address) {
// Lookup from cache.
auto it = global_variables_.find(name);
if (it != global_variables_.end()) {
if (it->second.has_value()) {
*memory_address = it->second.value();
return true;
}
return false;
}
// Linear scan of all symbols.
for (uint32_t i = 0; i < count_; i++) {
uint64_t offset = i * entry_size_;
if (__builtin_add_overflow(offset_, offset, &offset)) {
// The elf data might be malformed.
return false;
}
SymType entry;
if (!elf_memory->ReadFully(offset, &entry, sizeof(entry))) {
return false;
}
if (entry.st_shndx != SHN_UNDEF && ELF32_ST_TYPE(entry.st_info) == STT_OBJECT &&
ELF32_ST_BIND(entry.st_info) == STB_GLOBAL) {
uint64_t str_offset = str_offset_ + entry.st_name;
if (__builtin_add_overflow(str_offset_, entry.st_name, &str_offset)) {
// The elf data might be malformed.
return false;
}
if (str_offset < str_end_) {
std::string symbol;
if (elf_memory->ReadString(str_offset, &symbol, str_end_ - str_offset) && symbol == name) {
global_variables_.emplace(name, entry.st_value);
*memory_address = entry.st_value;
return true;
}
}
}
}
global_variables_.emplace(name, std::optional<uint64_t>()); // Remember "not found" outcome.
return false;
}
// Instantiate all of the needed template functions.
template bool Symbols::GetName<Elf32_Sym>(uint64_t, Memory*, SharedString*, uint64_t*);
template bool Symbols::GetName<Elf64_Sym>(uint64_t, Memory*, SharedString*, uint64_t*);
template bool Symbols::GetGlobal<Elf32_Sym>(Memory*, const std::string&, uint64_t*);
template bool Symbols::GetGlobal<Elf64_Sym>(Memory*, const std::string&, uint64_t*);
} // namespace unwindstack