-
Notifications
You must be signed in to change notification settings - Fork 45
/
mnistKerasCNN.py
220 lines (171 loc) · 6.64 KB
/
mnistKerasCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
'''Trains a simple convnet on the MNIST dataset.
Gets to 99.25% test accuracy after 12 epochs
(there is still a lot of margin for parameter tuning).
16 seconds per epoch on a GRID K520 GPU.
'''
#converted for ue4 use from
#https://github.com/fchollet/keras/blob/master/examples/mnist_cnn.py
import json
from pathlib import Path
from tensorflow.python import keras
from tensorflow.python.keras.datasets import mnist
from tensorflow.python.keras.models import Sequential, load_model
from tensorflow.python.keras.layers import Dense, Dropout, Flatten
from tensorflow.python.keras.layers import Conv2D, MaxPooling2D
from tensorflow.python.keras.models import model_from_json
from tensorflow.python.keras import backend as K
import numpy as np
import operator
import sys
import random
import tensorflow as tf
import unreal_engine as ue
from TFPluginAPI import TFPluginAPI
class MnistKeras(TFPluginAPI):
#keras stop callback
class StopCallback(keras.callbacks.Callback):
def __init__(self, outer):
self.outer = outer
def on_train_begin(self, logs={}):
self.losses = []
def on_batch_end(self, batch, logs={}):
if(self.outer.shouldStop):
#notify on first call
if not (self.model.stop_training):
ue.log('Early stop called!')
self.model.stop_training = True
else:
if(batch % 5 == 0):
#json convertible types are float64 not float32
logs['acc'] = np.float64(logs['acc'])
logs['loss'] = np.float64(logs['loss'])
self.outer.callEvent('TrainingUpdateEvent', logs, True)
#callback an example image from batch to see the actual data we're training on
if((batch*self.outer.batch_size) % 10000 == 0):
index = random.randint(0,self.outer.batch_size)*batch
self.outer.jsonPixels['pixels'] = self.outer.x_train[index].ravel().tolist()
self.outer.callEvent('PixelEvent', self.outer.jsonPixels, True)
#expected api: setup your model for training
def onSetup(self):
#setup or load your model and pass it into stored
#Usually store session, graph, and model if using keras
#self.sess = tf.InteractiveSession()
#self.graph = tf.get_default_graph()
self.stopcallback = self.StopCallback(self)
#expected api: storedModel and session, json inputs
def onJsonInput(self, jsonInput):
#build the result object
result = {'prediction':-1}
#prepare the input
x_raw = [jsonInput['pixels']]
x_raw = np.reshape(x_raw, (1, 28, 28))
ue.log('image shape: ' + str(x_raw.shape))
#ue.log(stored)
#convert pixels to N_samples, height, width, N_channels input tensor
x = np.reshape(x_raw, (len(x_raw), 28, 28, 1))
ue.log('input shape: ' + str(x.shape))
#run run the input through our network
if self.model is None:
ue.log("Warning! No 'model' found. Did training complete?")
return result
#restore our saved session and model
K.set_session(self.session)
with self.session.as_default():
output = self.model.predict(x)
ue.log(output)
#convert output array to prediction
index, value = max(enumerate(output[0]), key=operator.itemgetter(1))
result['prediction'] = index
result['pixels'] = jsonInput['pixels'] #unnecessary but useful for round tripping
return result
#expected api: no params forwarded for training? TBC
def onBeginTraining(self):
ue.log("starting mnist keras cnn training")
model_file_name = "mnistKerasCNN"
model_directory = ue.get_content_dir() + "/Scripts/"
model_sess_path = model_directory + model_file_name + ".tfsess"
model_json_path = model_directory + model_file_name + ".json"
my_file = Path(model_json_path)
#reset the session each time we get training calls
K.clear_session()
#let's train
batch_size = 128
num_classes = 10
epochs = 5 # lower default for simple testing
self.batch_size = batch_size # so that it can be obtained inside keras callbacks
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
ue.log('x_train shape:' + str(x_train.shape))
ue.log(str(x_train.shape[0]) + 'train samples')
ue.log(str(x_test.shape[0]) + 'test samples')
#pre-fill our callEvent data to optimize callbacks
jsonPixels = {}
size = {'x':28, 'y':28}
jsonPixels['size'] = size
self.jsonPixels = jsonPixels
self.x_train = x_train
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(64, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
# model.add(Dropout(0.2))
# model.add(Flatten())
# model.add(Dense(512, activation='relu'))
# model.add(Dropout(0.2))
# model.add(Dense(num_classes, activation='softmax'))
#model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test),
callbacks=[self.stopcallback])
score = model.evaluate(x_test, y_test, verbose=0)
ue.log("mnist keras cnn training complete.")
ue.log('Test loss:' + str(score[0]))
ue.log('Test accuracy:' + str(score[1]))
self.session = K.get_session()
self.model = model
stored = {'model':model, 'session': self.session}
#run a test evaluation
ue.log(x_test.shape)
result_test = model.predict(np.reshape(x_test[500],(1,28,28,1)))
ue.log(result_test)
#flush the architecture model data to disk
#with open(model_json_path, "w") as json_file:
# json_file.write(model.to_json())
#flush the whole model and weights to disk
#saver = tf.train.Saver()
#save_path = saver.save(K.get_session(), model_sess_path)
#model.save(model_path)
return stored
#required function to get our api
def getApi():
#return CLASSNAME.getInstance()
return MnistKeras.getInstance()