-
Notifications
You must be signed in to change notification settings - Fork 11
/
config.py
291 lines (235 loc) · 9.14 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import logging
import os
from importlib import import_module
from inspect import signature
from typing import Dict, List, Optional
from pydantic import BaseModel, field_validator
from pydantic.networks import IPvAnyAddress
DEFAULT_CONFIG_TEMPLATE = """
# Configuration used to run the pipeline
project_id: {project_id}
region: {region}
run_config:
# Name of the image to run as the pipeline steps
image: {image}
# Location of Vertex AI GCS root
root: bucket_name/gcs_suffix
# Name of the Vertex AI experiment to be created
experiment_name: {project}-experiment
# Optional description of the Vertex AI experiment to be created
# experiment_description: "My experiment description."
# Name of the scheduled run, templated with the schedule parameters
scheduled_run_name: {run_name}
# Optional service account to run vertex AI Pipeline with
# service_account: [email protected]
# Optional pipeline description
# description: "Very Important Pipeline"
# Optional config for node execution grouping. - 2 classes are provided:
# - default no-grouping option IdentityNodeGrouper
# - tag based grouping with TagNodeGrouper
grouping:
cls: kedro_vertexai.grouping.IdentityNodeGrouper
# cls: kedro_vertexai.grouping.TagNodeGrouper
# params:
# tag_prefix: "group."
# How long to keep underlying Argo workflow (together with pods and data
# volume after pipeline finishes) [in seconds]. Default: 1 week
ttl: 604800
# Optional network configuration
# network:
# Name of the vpc to use for running Vertex Pipeline
# vpc: my-vpc
# Hosts aliases to be placed in /etc/hosts when pipeline is executed
# host_aliases:
# - ip: 127.0.0.1
# hostnames:
# - me.local
# What Kedro pipeline should be run as the last step regardless of the
# pipeline status. Used to send notifications or raise the alerts
# on_exit_pipeline: notify_via_slack
# Optional section allowing adjustment of the resources, reservations and limits
# for the nodes. You can specify node names or tags to select which nodes the requirements
# apply to (also in node selectors). When not provided they're set to 500m cpu and 1024Mi memory.
# If you don't want to specify pipeline resources set both to None in __default__.
resources:
# For nodes that require more RAM you can increase the "memory"
data_import_step:
memory: 4Gi
# Training nodes can utilize more than one CPU if the algoritm
# supports it
model_training:
cpu: 8
memory: 8Gi
gpu: 1
# Default settings for the nodes
__default__:
cpu: 1000m
memory: 2048Mi
node_selectors:
model_training:
cloud.google.com/gke-accelerator: NVIDIA_TESLA_T4
# Optional section allowing to generate config files at runtime,
# useful e.g. when you need to obtain credentials dynamically and store them in credentials.yaml
# but the credentials need to be refreshed per-node
# (which in case of Vertex AI would be a separate container / machine)
# Example:
# dynamic_config_providers:
# - cls: kedro_vertexai.auth.gcp.MLFlowGoogleOAuthCredentialsProvider
# params:
# client_id: iam-client-id
dynamic_config_providers: []
# Additional configuration for MLflow request header providers, e.g. to generate access tokens at runtime
# mlflow:
# request_header_provider_params:
# key: value
# Schedules configuration
schedules:
default_schedule:
cron_expression: "0 * * * *"
timezone: Etc/UTC
start_time: none
end_time: none
allow_queueing: false
max_run_count: none
max_concurrent_run_count: 1
# training_pipeline:
# cron_expression: "0 0 * * *"
# timezone: America/New_York
# start_time: none
# end_time: none
# allow_queueing: false
# max_run_count: none
# max_concurrent_run_count: 1
"""
logger = logging.getLogger(__name__)
def dynamic_load_class(load_class):
try:
module_name, class_name = load_class.rsplit(".", 1)
logger.info(f"Initializing {class_name}")
class_load = getattr(import_module(module_name), class_name)
return class_load
except: # noqa: E722
logger.error(
f"Could not dynamically load class {load_class}, "
f"make sure it's valid and accessible from the current Python interpreter",
exc_info=True,
)
return None
def dynamic_init_class(load_class, *args, **kwargs):
if args is None:
args = []
if kwargs is None:
kwargs = {}
try:
loaded_class = dynamic_load_class(load_class)
if loaded_class is None:
return None
return loaded_class(*args, **kwargs)
except: # noqa: E722
logger.error(
f"Could not dynamically init class {load_class} with its init params, "
f"make sure the configured params match the ",
exc_info=True,
)
class GroupingConfig(BaseModel):
cls: str = "kedro_vertexai.grouping.IdentityNodeGrouper"
params: Optional[dict] = {}
@field_validator("cls")
def class_valid(cls, v, values, **kwargs):
try:
grouper_class = dynamic_load_class(v)
class_sig = signature(grouper_class)
if "params" in values.data:
class_sig.bind(None, **values.data["params"])
else:
class_sig.bind(None)
except: # noqa: E722
raise ValueError(
f"Invalid parameters for grouping class {v}, validation failed."
)
return v
# @computed_field
# @cached_property
# def used_provider(self):
# load_class = dynamic_load_class(self.cls)
# # fail gracefully here if wrong params are provided here?
# self._grouping_object = load_class(**self.params)
# return self._grouping_object
class HostAliasConfig(BaseModel):
ip: IPvAnyAddress
hostnames: List[str]
class ResourcesConfig(BaseModel):
cpu: Optional[str] = None
gpu: Optional[str] = None
memory: Optional[str] = None
class NetworkConfig(BaseModel):
vpc: Optional[str] = None
host_aliases: Optional[List[HostAliasConfig]] = []
class DynamicConfigProviderConfig(BaseModel):
cls: str
params: Optional[Dict[str, str]] = {}
class MLFlowVertexAIConfig(BaseModel):
request_header_provider_params: Optional[Dict[str, str]] = None
class ScheduleConfig(BaseModel):
cron_expression: Optional[str] = "0 * * * *"
timezone: Optional[str] = "Etc/UTC"
start_time: Optional[str] = None
end_time: Optional[str] = None
allow_queueing: Optional[bool] = False
max_run_count: Optional[int] = None
max_concurrent_run_count: Optional[int] = 1
class RunConfig(BaseModel):
image: str
root: Optional[str] = None
description: Optional[str] = None
experiment_name: str
experiment_description: Optional[str] = None
scheduled_run_name: Optional[str] = None
grouping: Optional[GroupingConfig] = GroupingConfig()
service_account: Optional[str] = None
network: Optional[NetworkConfig] = NetworkConfig()
ttl: int = 3600 * 24 * 7
resources: Optional[Dict[str, ResourcesConfig]] = dict(
__default__=ResourcesConfig(cpu="500m", memory="1024Mi")
)
node_selectors: Optional[Dict[str, Dict[str, str]]] = {}
dynamic_config_providers: Optional[List[DynamicConfigProviderConfig]] = []
mlflow: Optional[MLFlowVertexAIConfig] = None
schedules: Optional[Dict[str, ScheduleConfig]] = None
def resources_for(self, node: str, tags: Optional[set] = None):
default_config = self.resources["__default__"].dict()
return self._config_for(node, tags, self.resources, default_config)
def node_selectors_for(self, node: str, tags: Optional[set] = None):
return self._config_for(node, tags, self.node_selectors)
@staticmethod
def _config_for(
node: str, tags: set, params: dict, default_config: Optional[dict] = None
):
tags = tags or set()
names = [*tags, node]
filled_names = [x for x in names if x in params.keys()]
results = default_config or {}
for name in filled_names:
configs = (
params[name] if isinstance(params[name], dict) else params[name].dict()
)
results.update({k: v for k, v in configs.items() if v is not None})
return results
class KedroVertexAIRunnerConfig(BaseModel):
# This is intentionally a separate dataclass, for future extensions
storage_root: str
class PluginConfig(BaseModel):
project_id: str
region: str
run_config: RunConfig
@staticmethod
def sample_config(**kwargs):
return DEFAULT_CONFIG_TEMPLATE.format(**kwargs)
@staticmethod
def initialize_github_actions(project_name, where, templates_dir):
os.makedirs(where / ".github/workflows", exist_ok=True)
for template in ["on-push.yml"]:
file_path = where / ".github/workflows" / template
template_file = templates_dir / f"github-{template}"
with open(template_file, "r") as tfile, open(file_path, "w") as f:
f.write(tfile.read().format(project_name=project_name))