Fitting selection variable models with multi trait models with simulated data.
library(BGLR)
data(simulated3t)
y<-as.matrix(simulated3t.pheno[,1:3])
g<-as.matrix(simulated3t.pheno[,4:6])
cov(g)
y<-scale(y,center=TRUE,scale=FALSE)
y.orig<-y
X<-simulated3t.X
X<-scale(X)/sqrt(ncol(X))
ETA1<-list(list(X=X,model="SpikeSlab",
inclusionProb=list(probIn=rep(1/100,ncol(y)),
counts=rep(1E6,ncol(y)))))
#Fit the model
fm1<-Multitrait(y=y,ETA=ETA1,nIter=1000,burnIn=500)
#Residual covariance, UN
fm1$resCov
#Compare against the TRUE residual covariance matrix
#6.0 6.0 1.0
#6.0 8.0 2.0
#1.0 2.0 1.0
#Genetic co-variance
crossprod(fm1$ETA[[1]]$beta)/fm1$ETA[[1]]$p
#Compare against the TRUE genetic co-variance matrix
#1.00 0.34 0.07
#0.34 1.00 0.21
#0.07 0.21 1.00
#Covariance matrix for b, UN
fm1$ETA[[1]]$Cov