forked from zhoubolei/CAM
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathpy_demo.py
97 lines (75 loc) · 3.12 KB
/
py_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import sys
import os
try:
caffe_root = os.environ['CAFFE_ROOT'] + '/'
except KeyError:
raise KeyError("Define CAFFE_ROOT in ~/.bashrc")
sys.path.insert(1, caffe_root+'python/')
import caffe
import cv2
from py_returnCAMmap import py_returnCAMmap
from py_map2jpg import py_map2jpg
import scipy.io
def im2double(im):
return cv2.normalize(im.astype('float'), None, 0.0, 1.0, cv2.NORM_MINMAX)
## Be aware that since Matlab is 1-indexed and column-major,
## the usual 4 blob dimensions in Matlab are [width, height, channels, num]
## In python the dimensions are [num, channels, width, height]
model = 'googlenet'
if model == 'alexnet':
net_weights = 'models/alexnetplusCAM_imagenet.caffemodel'
net_model = 'models/deploy_alexnetplusCAM_imagenet.prototxt'
out_layer = 'fc9'
last_conv = 'conv7'
crop_size = 227
elif model == 'googlenet':
net_weights = 'models/imagenet_googlenetCAM_train_iter_120000.caffemodel'
net_model = 'models/deploy_googlenetCAM.prototxt'
out_layer = 'CAM_fc'
crop_size = 224
last_conv = 'CAM_conv'
else:
raise Exception('This model is not defined')
categories = scipy.io.loadmat('categories1000.mat')
# load CAM model and extract features
net = caffe.Net(net_model, net_weights, caffe.TEST)
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1))
#transformer.set_channel_swap('data', (2,1,0)) # the reference model has channels in BGR order instead of RGB
weights_LR = net.params[out_layer][0].data # get the softmax layer of the network
# shape: [1000, N] N-> depends on the network
image = cv2.imread('img2.jpg')
image = cv2.resize(image, (256, 256))
# Take center crop.
center = np.array(image.shape[:2]) / 2.0
crop = np.tile(center, (1, 2))[0] + np.concatenate([
-np.array([crop_size, crop_size]) / 2.0,
np.array([crop_size, crop_size]) / 2.0
])
crop = crop.astype(int)
input_ = image[crop[0]:crop[2], crop[1]:crop[3], :]
# extract conv features
net.blobs['data'].reshape(*np.asarray([1,3,crop_size,crop_size])) # run only one image
net.blobs['data'].data[...][0,:,:,:] = transformer.preprocess('data', input_)
out = net.forward()
scores = out['prob']
activation_lastconv = net.blobs[last_conv].data
## Class Activation Mapping
topNum = 5 # generate heatmap for top X prediction results
scoresMean = np.mean(scores, axis=0)
ascending_order = np.argsort(scoresMean)
IDX_category = ascending_order[::-1] # [::-1] to sort in descending order
curCAMmapAll = py_returnCAMmap(activation_lastconv, weights_LR[IDX_category[:topNum],:])
curResult = im2double(image)
for j in range(topNum):
# for one image
curCAMmap_crops = curCAMmapAll[:,:,j]
curCAMmapLarge_crops = cv2.resize(curCAMmap_crops, (256,256))
curHeatMap = cv2.resize(im2double(curCAMmapLarge_crops),(256,256)) # this line is not doing much
curHeatMap = im2double(curHeatMap)
curHeatMap = py_map2jpg(curHeatMap, None, 'jet')
curHeatMap = im2double(image)*0.2+im2double(curHeatMap)*0.7
cv2.imshow(categories['categories'][IDX_category[j]][0][0], curHeatMap)
cv2.waitKey(0)