Skip to content

Latest commit

 

History

History
 
 

LangChain

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Langchain examples

The examples in this folder shows how to use LangChain with ipex-llm on Intel GPU.

1. Install ipex-llm

Follow the instructions in GPU Install Guide to install ipex-llm

2. Install Required Dependencies for langchain examples.

pip install langchain==0.0.184
pip install -U chromadb==0.3.25
pip install -U pandas==2.0.3

3. Configures OneAPI environment variables for Linux

Note

Skip this step if you are running on Windows.

This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.

source /opt/intel/oneapi/setvars.sh

4. Runtime Configurations

For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.

4.1 Configurations for Linux

For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
For Intel Data Center GPU Max Series
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export SYCL_CACHE_PERSISTENT=1
export ENABLE_SDP_FUSION=1

Note: Please note that libtcmalloc.so can be installed by conda install -c conda-forge -y gperftools=2.10.

For Intel iGPU
export SYCL_CACHE_PERSISTENT=1
export BIGDL_LLM_XMX_DISABLED=1

4.2 Configurations for Windows

For Intel iGPU
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
For Intel Arc™ A-Series Graphics
set SYCL_CACHE_PERSISTENT=1

Note

For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.

5. Run the examples

5.1. Streaming Chat

python chat.py -m MODEL_PATH -q QUESTION

arguments info:

  • -m MODEL_PATH: required, path to the model
  • -q QUESTION: question to ask. Default is What is AI?.

5.2. RAG (Retrival Augmented Generation)

python rag.py -m <path_to_model> [-q QUESTION] [-i INPUT_PATH]

arguments info:

  • -m MODEL_PATH: required, path to the model.
  • -q QUESTION: question to ask. Default is What is IPEX?.
  • -i INPUT_PATH: path to the input doc.

5.2. Low Bit

The low_bit example (low_bit.py) showcases how to use use langchain with low_bit optimized model. By save_low_bit we save the weights of low_bit model into the target folder.

Note: save_low_bit only saves the weights of the model. Users could copy the tokenizer model into the target folder or specify tokenizer_id during initialization.

python low_bit.py -m <path_to_model> -t <path_to_target> [-q <your question>]

Runtime Arguments Explained:

  • -m MODEL_PATH: Required, the path to the model
  • -t TARGET_PATH: Required, the path to save the low_bit model
  • -q QUESTION: the question