forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpo_finetuning.py
179 lines (152 loc) · 6.39 KB
/
dpo_finetuning.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Some parts of this file is adapted from
# https://github.com/mlabonne/llm-course/blob/main/Fine_tune_a_Mistral_7b_model_with_DPO.ipynb
#
# Copyright [yyyy] [name of copyright owner]
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import transformers
from transformers import AutoTokenizer, TrainingArguments, BitsAndBytesConfig
from datasets import load_dataset
from peft import LoraConfig
from ipex_llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training
from ipex_llm.transformers import AutoModelForCausalLM
from trl import DPOTrainer
import argparse
def chatml_format(example):
# Format system
if len(example['system']) > 0:
message = {"role": "system", "content": example['system']}
system = tokenizer.apply_chat_template([message], tokenize=False)
else:
system = ""
# Format instruction
message = {"role": "user", "content": example['question']}
prompt = tokenizer.apply_chat_template([message], tokenize=False, add_generation_prompt=True)
# Format chosen answer
chosen = example['chosen'] + "<|im_end|>\n"
# Format rejected answer
rejected = example['rejected'] + "<|im_end|>\n"
return {
"prompt": system + prompt,
"chosen": chosen,
"rejected": rejected,
}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Finetune a Mistral-7b model with DPO')
parser.add_argument('--repo-id-or-model-path', type=str, default="teknium/OpenHermes-2.5-Mistral-7B",
help='The huggingface repo id for the Mistral (e.g. `teknium/OpenHermes-2.5-Mistral-7B`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--dataset', type=str, default="Intel/orca_dpo_pairs")
parser.add_argument('--output-path', type=str, default="outputs")
parser.add_argument('--gradient-checkpointing', action='store_true', help='Whether to enable gradient checkpointing to save memory at the expense of slower backward pass.')
args = parser.parse_args()
model_path = args.repo_id_or_model_path
dataset_path = args.dataset
output_path = args.output_path
gradient_checkpointing = args.gradient_checkpointing
# Load dataset
dataset = load_dataset(dataset_path)['train']
# Save columns
original_columns = dataset.column_names
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
# Format dataset
dataset = dataset.map(
chatml_format,
remove_columns=original_columns
)
# LoRA configuration
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(model_path,
quantization_config=bnb_config, )
# below is also supported
# model = AutoModelForCausalLM.from_pretrained(model_path,
# load_in_low_bit="nf4",
# optimize_model=False,
# torch_dtype=torch.bfloat16,
# modules_to_not_convert=["lm_head"],)
model = model.to('xpu')
# Prepare a IPEX-LLM compatible Peft model
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=gradient_checkpointing)
model = get_peft_model(model, peft_config)
model.config.use_cache = False
model.print_trainable_parameters()
# Reference model, same as the main one
ref_model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_low_bit="nf4",
optimize_model=False,
torch_dtype=torch.bfloat16,
modules_to_not_convert=["lm_head"],)
ref_model = ref_model.to('xpu')
# Training arguments
training_args = TrainingArguments(
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
gradient_checkpointing=gradient_checkpointing,
learning_rate=5e-5,
lr_scheduler_type="cosine",
max_steps=200,
save_strategy="no",
logging_steps=1,
output_dir=output_path,
# optim="paged_adamw_32bit", # "paged_adamw_32bit" is not supported yet
optim="adamw_hf",
warmup_steps=100,
bf16=True,
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
beta=0.1,
max_prompt_length=1024,
max_length=1536,
)
# Fine-tune model with DPO
dpo_trainer.train()
# Save artifacts
dpo_trainer.model.save_pretrained(output_path)
tokenizer.save_pretrained(output_path)