forked from intel-analytics/ipex-llm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
long-segment-recognize.py
72 lines (60 loc) · 2.91 KB
/
long-segment-recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import time
import librosa
import argparse
from transformers import pipeline
from ipex_llm.transformers import AutoModelForSpeechSeq2Seq
from transformers.models.whisper import WhisperFeatureExtractor, WhisperTokenizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Recognize Long Segment using `generate()` API for Whisper model')
parser.add_argument('--repo-id-or-model-path', type=str, default="openai/whisper-medium",
help='The huggingface repo id for the Whisper model to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--audio-file', type=str, required=True,
help='The path of the audio file to be recognized.')
parser.add_argument('--language', type=str, default="english",
help='language to be transcribed')
parser.add_argument('--batch-size', type=int, default=2,
help='The batch_size of pipeline inference, '
'it usually equals of length of the audio divided by chunk-length.')
parser.add_argument('--chunk-length', type=int, default=30,
help="The maximum time lengths of chuncks of sampling_rate samples used to trim"
"and pad longer or shorter audio sequences. Default to be 30s.")
args = parser.parse_args()
# Path to the .wav audio file
audio_file_path = args.audio_file
model_path = args.repo_id_or_model_path
# Load the input audio
y, sr = librosa.load(audio_file_path, sr=None)
# Downsample the audio to 16kHz
target_sr = 16000
audio = librosa.resample(y,
orig_sr=sr,
target_sr=target_sr)
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_path, load_in_4bit=True)
model.config.forced_decoder_ids = None
pipe = pipeline(
"automatic-speech-recognition",
model=model,
feature_extractor= WhisperFeatureExtractor.from_pretrained(model_path),
tokenizer= WhisperTokenizer.from_pretrained(model_path, language=args.language),
chunk_length_s=args.chunk_length,
)
start = time.time()
prediction = pipe(audio, batch_size=args.batch_size)["text"]
print(f"inference time is {time.time()-start}")
print(prediction)