-
Notifications
You must be signed in to change notification settings - Fork 67
/
DiffDriveOdometry_TEST.cc
130 lines (112 loc) · 5.06 KB
/
DiffDriveOdometry_TEST.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/*
* Copyright (C) 2019 Open Source Robotics Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
#include <gtest/gtest.h>
#include "gz/math/Angle.hh"
#include "gz/math/Helpers.hh"
#include "gz/math/DiffDriveOdometry.hh"
using namespace gz;
/////////////////////////////////////////////////
TEST(DiffDriveOdometryTest, DiffDriveOdometry)
{
math::DiffDriveOdometry odom;
EXPECT_DOUBLE_EQ(0.0, *odom.Heading());
EXPECT_DOUBLE_EQ(0.0, odom.X());
EXPECT_DOUBLE_EQ(0.0, odom.Y());
EXPECT_DOUBLE_EQ(0.0, odom.LinearVelocity());
EXPECT_DOUBLE_EQ(0.0, *odom.AngularVelocity());
EXPECT_FALSE(odom.Initialized());
double wheelSeparation = 2.0;
double wheelRadius = 0.5;
double wheelCircumference = 2 * GZ_PI * wheelRadius;
// This is the linear distance traveled per degree of wheel rotation.
double distPerDegree = wheelCircumference / 360.0;
// Setup the wheel parameters, and initialize
odom.SetWheelParams(wheelSeparation, wheelRadius, wheelRadius);
auto startTime = std::chrono::steady_clock::now();
odom.Init(startTime);
EXPECT_TRUE(odom.Initialized());
// Expect false if time difference is too small
EXPECT_FALSE(odom.Update(0.0, 0.0, startTime));
// Sleep for a little while, then update the odometry with the new wheel
// position.
auto time1 = startTime + std::chrono::milliseconds(100);
EXPECT_TRUE(odom.Update(GZ_DTOR(1.0), GZ_DTOR(1.0), time1));
EXPECT_DOUBLE_EQ(0.0, *odom.Heading());
EXPECT_DOUBLE_EQ(distPerDegree, odom.X());
EXPECT_DOUBLE_EQ(0.0, odom.Y());
// Linear velocity should be dist_traveled / time_elapsed.
EXPECT_NEAR(distPerDegree / 0.1, odom.LinearVelocity(), 1e-3);
// Angular velocity should be zero since the "robot" is traveling in a
// straight line.
EXPECT_NEAR(0.0, *odom.AngularVelocity(), 1e-3);
// Sleep again, then update the odometry with the new wheel position.
auto time2 = time1 + std::chrono::milliseconds(100);
EXPECT_TRUE(odom.Update(GZ_DTOR(2.0), GZ_DTOR(2.0), time2));
EXPECT_DOUBLE_EQ(0.0, *odom.Heading());
EXPECT_NEAR(distPerDegree * 2.0, odom.X(), 3e-6);
EXPECT_DOUBLE_EQ(0.0, odom.Y());
// Linear velocity should be dist_traveled / time_elapsed.
EXPECT_NEAR(distPerDegree / 0.1, odom.LinearVelocity(), 1e-3);
// Angular velocity should be zero since the "robot" is traveling in a
// straight line.
EXPECT_NEAR(0.0, *odom.AngularVelocity(), 1e-3);
// Initialize again, and odom values should be reset.
startTime = std::chrono::steady_clock::now();
odom.Init(startTime);
EXPECT_DOUBLE_EQ(0.0, *odom.Heading());
EXPECT_DOUBLE_EQ(0.0, odom.X());
EXPECT_DOUBLE_EQ(0.0, odom.Y());
EXPECT_DOUBLE_EQ(0.0, odom.LinearVelocity());
EXPECT_DOUBLE_EQ(0.0, *odom.AngularVelocity());
EXPECT_TRUE(odom.Initialized());
// Sleep again, this time move 2 degrees in 100ms.
time1 = startTime + std::chrono::milliseconds(100);
EXPECT_TRUE(odom.Update(GZ_DTOR(2.0), GZ_DTOR(2.0), time1));
EXPECT_DOUBLE_EQ(0.0, *odom.Heading());
EXPECT_NEAR(distPerDegree * 2.0, odom.X(), 3e-6);
EXPECT_DOUBLE_EQ(0.0, odom.Y());
// Linear velocity should be dist_traveled / time_elapsed.
EXPECT_NEAR(distPerDegree * 2 / 0.1, odom.LinearVelocity(), 1e-3);
// Angular velocity should be zero since the "robot" is traveling in a
// straight line.
EXPECT_NEAR(0.0, *odom.AngularVelocity(), 1e-3);
// Sleep again, this time rotate the right wheel by 1 degree.
time2 = time1 + std::chrono::milliseconds(100);
EXPECT_TRUE(odom.Update(GZ_DTOR(2.0), GZ_DTOR(3.0), time2));
// The heading should be the arc tangent of the linear distance traveled
// by the right wheel (the left wheel was stationary) divided by the
// wheel separation.
EXPECT_NEAR(atan2(distPerDegree, wheelSeparation), *odom.Heading(), 1e-6);
// The X odom reading should have increased by the sine of the heading *
// half the wheel separation.
double xDistTraveled =
sin(atan2(distPerDegree, wheelSeparation)) * wheelSeparation * 0.5;
double prevXPos = distPerDegree * 2.0;
EXPECT_NEAR(xDistTraveled + prevXPos, odom.X(), 3e-6);
// The Y odom reading should have increased by the cosine of the header *
// half the wheel separation.
double yDistTraveled = (wheelSeparation * 0.5) -
cos(atan2(distPerDegree, wheelSeparation)) * wheelSeparation * 0.5;
double prevYPos = 0.0;
EXPECT_NEAR(yDistTraveled + prevYPos, odom.Y(), 3e-6);
// Angular velocity should be the difference between the x and y distance
// traveled divided by the wheel separation divided by the seconds
// elapsed.
EXPECT_NEAR(
((xDistTraveled - yDistTraveled) / wheelSeparation) / 0.1,
*odom.AngularVelocity(), 1e-3);
}