-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathevaluate.py
executable file
·305 lines (275 loc) · 13.7 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/usr/bin/env python
import matplotlib; matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import os
import sklearn.metrics
import tempfile
import operator
import scipy.interpolate as spi
import sys
from jinja2 import Environment, FileSystemLoader
matplotlib.rcParams['svg.fonttype'] = 'none'
matplotlib.rcParams['savefig.bbox'] = 'tight'
matplotlib.rcParams['savefig.pad_inches'] = 0.01
matplotlib.rcParams['figure.figsize'] = (3,3)
import tsh.obsolete as tsh; logger = tsh.create_logger(__name__)
from utils import read_listfile, read_truthfile, select
def create_roc_curve(true, prob):
if true.any() and not true.all():
fpr, tpr, _ = sklearn.metrics.roc_curve(true, prob)
return fpr, tpr
else:
return None, None
def plot_roc_curve(fpr, tpr, title=None, filename=None):
if fpr != None and tpr != None:
roc_auc = sklearn.metrics.auc(fpr, tpr)
else:
fpr = [0]
tpr = [0]
roc_auc = np.nan
plt.clf()
plt.plot(fpr, tpr, label='AUC = %0.2f' % roc_auc)
plt.plot([0, 1], [0, 1], 'k--')
plt.xlim([-0.01, 1.01])
plt.ylim([-0.01, 1.01])
plt.xlabel('FPR')
plt.ylabel('TPR')
if title != None:
plt.title(title)
plt.legend(loc='lower right')
if filename != None:
plt.savefig(filename)
plt.close()
def create_prc_curve(true, prob, title=None, filename=None):
if true.any() and not true.all():
precision, recall, _ = sklearn.metrics.precision_recall_curve(true, prob)
# XXX: get rid of the precision = 1 for recall = 0
if len(precision) > 1:
precision[-1] = precision[-2]
return precision, recall
else:
return None, None
def plot_prc_curve(precision, recall, title=None, filename=None):
if precision != None and recall != None:
prc_auc = sklearn.metrics.auc(recall, precision)
else:
recall = [0]
precision = [0]
prc_auc = np.nan
plt.clf()
plt.plot(recall, precision, label='AUC = %0.2f' % prc_auc)
plt.xlabel('Recall')
plt.ylabel('Precision')
plt.ylim([-0.01, 1.01])
plt.xlim([-0.01, 1.01])
if title != None:
plt.title(title)
plt.legend(loc='lower right')
if filename != None:
plt.savefig(filename)
plt.close()
def constant_extrap1d(interpolator):
xs = interpolator.x
ys = interpolator.y
def pointwise(x):
if x <= xs[0]: #XXX: <= instead of < because some TPR start with [0, 0, ...] - causes division by zero when dividing by slope
return ys[0]
elif x >= xs[-1]:
return ys[-1]
else:
return interpolator(x)
def ufunclike(xs):
return np.array(map(pointwise, np.array(xs)))
return ufunclike
def average_curves(x, y, n=1000):
f = [constant_extrap1d(spi.interp1d(xi, yi, kind='linear')) for xi, yi in zip(x, y)]
average_x = np.linspace(0, 1, num=n)
average_y = np.mean([fi(average_x) for fi in f], axis=0)
return average_x, average_y
def process(pred_filename, truth_filename, fprs=None, tprs=None, precisions=None, recalls=None, cms=None, accs=None, label_accs=None):
predname = os.path.splitext(os.path.basename(pred_filename))[0]
if pred_filename.endswith('.gz'):
predname = os.path.splitext(predname)[0]
truth_meta, truth_ids, truth = read_truthfile(truth_filename)
pred_meta, all_pred = read_listfile(pred_filename)
pred = select(all_pred, 'id', truth_ids)
logger.info('Using %d predicted samples with ground truth to evaluate', len(pred))
assert (np.array(truth_ids) == pred['id']).all()
truth_name = truth_meta['truth']
labels = truth_meta[truth_name + '_labels']
#roccurves = []
#prcurves = []
#for class_num, class_label in labels.items():
#true = truth == class_num
#prob = pred['prob%d' % class_num]
#prob = pred['pred'] == class_num
#prob = pred['pred_argmax'] == class_num
#fpr, tpr = create_roc_curve(true, prob)
#rocname = os.path.join(outdir, predname + '-roc-' + truth_name + '-%d' % class_num + '.svg')
#plot_roc_curve(fpr, tpr,
# title='ROC - ' + truth_name.capitalize() + ' ' + class_label,
# filename=rocname)
#roccurves += [rocname]
#if fpr != None:
# fprs[class_num] += [fpr]
#if tpr != None:
# tprs[class_num] += [tpr]
#precision, recall = create_prc_curve(true, prob)
#print class_label, precision, recall
#prcname = os.path.join(outdir, predname + '-prc-' + truth_name + '-%d' % class_num + '.svg')
#plot_prc_curve(precision, recall,
# title='Precision-Recall curve - ' + truth_name.capitalize() + ' ' + class_label,
# filename=prcname)
#prcurves += [prcname]
#if precision != None:
# precisions[class_num] += [precision]
#if recall != None:
# recalls[class_num] += [recall]
sorted_class_nums = sorted(labels.keys())
sorted_class_labels = tsh.dict_values(labels, sorted_class_nums)
cm = sklearn.metrics.confusion_matrix(truth, pred['pred'], labels=sorted_class_nums)
acc = (np.diag(cm).sum() / float(np.sum(cm)))
label_cnts = np.sum(cm, axis=1).astype(np.float64)
label_acc = np.array(['nan']*len(label_cnts), dtype=np.float64)
label_acc[label_cnts > 0] = np.diagonal(cm).astype(np.float64)[label_cnts > 0] / label_cnts[label_cnts > 0]
label_avg_acc = np.nansum(label_acc) / np.sum(np.isfinite(label_acc))
tsh.plot_confusion_matrix(cm, labels=sorted_class_labels)
plt.title('Sample accuracy: %.2f, label accuracy: %.2f' % (acc, label_avg_acc))
cmname = os.path.join(outdir, predname + '-cm.svg')
plt.savefig(cmname)
plt.close()
print 'Sample accuracy: %.2f, label accuracy: %.2f' % (acc, label_avg_acc)
with open(os.path.join(outdir, predname + '.txt'), 'w') as f:
for i in range(len(sorted_class_nums)):
f.write('%s accuracy: %3f\n' % (labels[sorted_class_nums[i]], label_acc[i]))
f.write('Sample accuracy: %.3f, label accuracy: %.3f\n' % (acc, label_avg_acc))
#samples = []
#truth_meta, truth = read_listfile(truth_filename)
#if 'image_prefix' in truth_meta:
# for t in truth:
# samples += [{
# 'id': t['id'],
# 'image': os.path.join('image', os.path.relpath(os.path.join(truth_meta['image_prefix'], t['image']), '/home/imp/kazmar/vt_project/Segmentation/Fine/MetaSys/')),
# 'mask': os.path.join('image', os.path.relpath(os.path.join(truth_meta['mask_prefix'], t['mask']), '/home/imp/kazmar/vt_project/Segmentation/Fine/MetaSys/')),
# 'expr': os.path.join('expr', 'expr%d.png' % t['id']),
# 'truth': labels[t[truth_name]],
# 'prediction': labels[pred['pred'][truth['id'] == t['id']][0]] }]
# template_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates')
# env = Environment(loader=FileSystemLoader(template_dir))
# open(os.path.join(outdir, predname + '.html'), 'w').write(env.get_template('evaluation.html').render(
# title=predname + ' ' + truth_name, cm=cmname, roccurves=roccurves, prcurves=prcurves, samples=samples, predictions=all_pred, accuracy=acc, label_accuracy=zip(sorted_class_nums, label_acc), label_nums=sorted_class_nums, labels=labels))
cms += [cm]
accs += [acc]
label_accs += [label_acc]
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Evaluates predictions against known truth.')
parser.add_argument('-c', '--config', dest='config', required=False, action='store', default=None, help='Path to the config file')
parser.add_argument('-p', '--predictions', dest='predictions', nargs='*', required=True, action='store', default=None, help='Predictions file(s).')
parser.add_argument('-t', '--truth', dest='truth', nargs='*', required=True, action='store', default=None, help='Truth file(s).')
parser.add_argument('--all-prefix', dest='all_prefix', required=False, action='store', default=None, help='Prefix for summary curves for multiple inputs.')
parser.add_argument('-o', '--output', dest='output', required=False, action='store', default=None, help='Output directory.')
opts = parser.parse_args()
config = tsh.read_config(opts, __file__)
if opts.output == None:
outdir = tempfile.mkdtemp(dir=os.curdir, prefix='out')
logger.info('Output directory %s', outdir)
else:
outdir = opts.output
if not os.path.exists(outdir):
tsh.makedirs(outdir)
truth_meta, _, _= read_truthfile(opts.truth[0])
truth_name = truth_meta['truth']
labels = truth_meta[truth_name + '_labels']
sorted_class_nums = sorted(labels.keys())
all_fprs = dict(zip(labels.keys(), [[] for _ in labels.keys()]))
all_tprs = dict(zip(labels.keys(), [[] for _ in labels.keys()]))
all_precisions = dict(zip(labels.keys(), [[] for _ in labels.keys()]))
all_recalls = dict(zip(labels.keys(), [[] for _ in labels.keys()]))
all_cms = []
all_accs = []
all_label_accs = []
datasets = []
for pred_filename, truth_filename in zip(opts.predictions, opts.truth):
logger.info('Prediction: %s, truth: %s', pred_filename, truth_filename)
process(pred_filename, truth_filename, fprs=all_fprs, tprs=all_tprs, precisions=all_precisions, recalls=all_recalls, cms=all_cms, accs=all_accs, label_accs=all_label_accs)
predname = os.path.splitext(os.path.basename(pred_filename))[0]
datasets += [{'url': predname + '.html', 'label': predname, 'accuracy': all_accs[-1], 'label_accuracy': all_label_accs[-1]}]
if opts.all_prefix == None:
if len(opts.predictions) == 1:
sys.exit(0)
all_prefix = 'all'
else:
all_prefix = opts.all_prefix
#roccurves = []
#prcurves = []
#for class_num, class_label in labels.items():
# if len(all_fprs[class_num]) == 0:
# tpr = None
# fpr = None
# else:
# fpr, tpr = average_curves(all_fprs[class_num], all_tprs[class_num])
# if len(all_recalls[class_num]) == 0:
# recall = None
# precision = None
# else:
# recall, precision = average_curves(map(lambda l: l[::-1], all_recalls[class_num]), map(lambda l: l[::-1], all_precisions[class_num]))
# recall = recall[::-1]
# precision = precision[::-1]
# rocname = os.path.join(outdir, all_prefix + '-roc-' + truth_name + '-%d' % class_num + '.svg')
# plot_roc_curve(fpr, tpr,
# title='ROC - ' + truth_name.capitalize() + ' ' + class_label,
# filename=rocname)
# roccurves += [rocname]
# prname = os.path.join(outdir, all_prefix + '-prc-' + truth_name + '-%d' % class_num + '.svg')
# plot_prc_curve(precision, recall,
# title='Precision-Recall curve - ' + truth_name.capitalize() + ' ' + class_label,
# filename=prname)
# prcurves += [prname]
#all_tprs = reduce(operator.concat, [all_tprs[class_num] for class_num in labels.keys() if len(all_tprs[class_num]) != 0])
#all_fprs = reduce(operator.concat, [all_fprs[class_num] for class_num in labels.keys() if len(all_fprs[class_num]) != 0])
#if len(all_fprs) == 0:
# tpr = None
# fpr = None
#else:
# fpr, tpr = average_curves(all_fprs, all_tprs)
#rocname = os.path.join(outdir, all_prefix + '-roc-' + truth_name + '.svg')
#plot_roc_curve(fpr, tpr,
# title='ROC - ' + truth_name.capitalize(),
# filename=rocname)
#roccurves += [rocname]
#all_recalls = reduce(operator.concat, [all_recalls[class_num] for class_num in labels.keys() if len(all_recalls[class_num]) != 0])
#all_precisions = reduce(operator.concat, [all_precisions[class_num] for class_num in labels.keys() if len(all_precisions[class_num]) != 0])
#if len(all_recalls) == 0:
# recall = None
# precision = None
#else:
# recall, precision = average_curves(map(lambda l: l[::-1], all_recalls), map(lambda l: l[::-1], all_precisions))
# recall = recall[::-1]
# precision = precision[::-1]
#prname = os.path.join(outdir, all_prefix + '-prc-' + truth_name + '.svg')
#plot_prc_curve(precision, recall,
# title='Precision-Recall curve - ' + truth_name.capitalize(),
# filename=prname)
#prcurves += [prname]
cm = np.sum(all_cms, axis=0)
set_acc = np.mean(all_accs)
sample_acc = (np.diag(cm).sum() / float(np.sum(cm)))
label_acc = np.array(all_label_accs, dtype=np.float64)
label_acc[np.isinf(label_acc)] = np.nan
label_acc = np.nansum(label_acc, axis=0) / np.sum(np.isfinite(label_acc), axis=0)
label_avg_acc = np.nansum(label_acc) / np.sum(np.isfinite(label_acc))
sorted_class_labels = tsh.dict_values(labels, sorted_class_nums)
tsh.plot_confusion_matrix(cm, labels=sorted_class_labels)
plt.title('Sample accuracy: %.3f, label accuracy: %.3f, set accuracy: %.3f' % (sample_acc, label_avg_acc, set_acc))
print all_prefix + ': Sample accuracy: %.3f, label accuracy: %.3f, set accuracy: %.3f' % (sample_acc, label_avg_acc, set_acc)
with open(os.path.join(outdir, all_prefix + '.txt'), 'w') as f:
f.write('Sample accuracy: %.3f, label accuracy: %.3f, set accuracy: %.3f\n' % (sample_acc, label_avg_acc, set_acc))
cmname = os.path.join(outdir, all_prefix + '-cm.svg')
plt.savefig(cmname)
plt.close()
#template_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates')
#env = Environment(loader=FileSystemLoader(template_dir))
#open(os.path.join(outdir, all_prefix + '-evaluation.html'), 'w').write(env.get_template('evaluation.html').render(
# title=all_prefix, cm=cmname, roccurves=roccurves, prcurves=prcurves, label_nums=sorted_class_nums, labels=labels, datasets=datasets, samples=None, predictions=None))