forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_nn.py
14209 lines (12098 loc) · 634 KB
/
test_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import math
import random
import string
import unittest
import io
import unittest.mock as mock
import itertools
import warnings
import pickle
from copy import deepcopy
from itertools import repeat, product
from functools import reduce
from operator import mul
from collections import OrderedDict
import torch
# TODO: remove this global setting
# NN tests use double as the default dtype
torch.set_default_dtype(torch.double)
from torch._six import inf, nan
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
import torch.nn.utils.rnn as rnn_utils
from torch.nn.utils import clip_grad_norm_, clip_grad_value_
import torch.nn.utils.prune as prune
from torch.nn.utils import parameters_to_vector, vector_to_parameters
from torch.autograd import gradcheck
from torch.autograd.gradcheck import gradgradcheck
from torch.nn import Parameter
from torch.nn.parameter import UninitializedParameter
from torch.nn.parallel._functions import Broadcast
from torch.testing import get_all_fp_dtypes
from torch.testing._internal.common_utils import freeze_rng_state, run_tests, TestCase, skipIfNoLapack, skipIfRocm, \
TEST_NUMPY, TEST_SCIPY, TEST_WITH_ROCM, download_file, \
get_function_arglist, load_tests, repeat_test_for_types, ALL_TENSORTYPES, \
ALL_TENSORTYPES2, suppress_warnings, TemporaryFileName, TEST_WITH_UBSAN, IS_PPC
from torch.testing._internal.common_cuda import TEST_CUDA, TEST_MULTIGPU, TEST_CUDNN, TEST_CUDNN_VERSION
from torch.testing._internal.common_nn import NNTestCase, NewModuleTest, CriterionTest, \
module_tests, criterion_tests, loss_reference_fns, \
ctcloss_reference, new_module_tests
from torch.testing._internal.common_device_type import instantiate_device_type_tests, dtypes, \
dtypesIfCUDA, skipCUDAIfNoCudnn, skipCUDAIfCudnnVersionLessThan, onlyCUDA, onlyCPU, \
skipCUDAIfRocm, skipCUDAIf, skipCUDAIfNotRocm, onlyOnCPUAndCUDA, \
deviceCountAtLeast, expectedAlertNondeterministic, largeTensorTest
from torch.nn import MultiheadAttention
from hypothesis import given
import torch.testing._internal.hypothesis_utils as hu
from torch.testing._internal.common_utils import _assertGradAndGradgradChecks
from torch.testing._internal.common_utils import dtype2prec_DONTUSE
from torch.testing._internal.common_cuda import tf32_on_and_off, tf32_is_not_fp32, tf32_off, tf32_on
from torch.types import _TensorOrTensors
AMPERE_OR_ROCM = TEST_WITH_ROCM or tf32_is_not_fp32()
# load_tests from common_utils is used to automatically filter tests for
# sharding on sandcastle. This line silences flake warnings
load_tests = load_tests
if TEST_SCIPY:
from scipy import stats
import scipy.ndimage
if TEST_NUMPY:
import numpy as np
DOUBLE_TENSORTYPES = [torch.double]
# WARNING: If you add a new top-level test case to this file, you MUST
# update test/run_test.py to list it, otherwise it will NOT be run in
# CI.
class PackedSequenceTest(TestCase):
_type_by_name = {
'torch.DoubleTensor': (torch.DoubleTensor, 'double'),
'torch.FloatTensor': (torch.FloatTensor, 'float'),
# We leave out `'torch.HalfTensor': (torch.HalfTensor, 'half'),`
# because of an error in `pad_packed_sequence`
# > AttributeError: 'torch.HalfTensor' object has no attribute 'fill_'
'torch.LongTensor': (torch.LongTensor, 'long'),
'torch.IntTensor': (torch.IntTensor, 'int'),
'torch.ShortTensor': (torch.ShortTensor, 'short'),
'torch.CharTensor': (torch.CharTensor, 'char'),
'torch.ByteTensor': (torch.ByteTensor, 'byte'),
}
def __init__(self, *args, **kwargs):
super(PackedSequenceTest, self).__init__(*args, **kwargs)
self.batch_size = 5
self.max_length = 6
def _ordered_sequence(self, tensor_type):
"""Create ordered list of random sequences"""
seqs = [tensor_type(random.randint(1, self.max_length))
for _ in range(self.batch_size)]
if tensor_type == torch.ByteTensor:
seqs = [s.random_(0, 256) for s in seqs]
else:
seqs = [s.random_(-128, 128) for s in seqs]
ordered = sorted(seqs, key=len, reverse=True)
return ordered
def _padded_sequence(self, tensor_type):
"""Create Tensor of random padded sequences"""
ordered = self._ordered_sequence(tensor_type)
lengths = [len(i) for i in ordered]
padded_tensor = rnn_utils.pad_sequence(ordered)
return padded_tensor, lengths
def test_type_casts(self):
"""Test type casting of `PackedSequence` against type casting of tensor"""
for _, (input_type, _) in self._type_by_name.items():
for expected_type_str, (_, cast_str) in self._type_by_name.items():
for enforce_sorted in [True, False]:
padded, lengths = self._padded_sequence(input_type)
packed = rnn_utils.pack_padded_sequence(
padded, lengths, enforce_sorted=enforce_sorted)
# Apply cast to `PackedSequence` instance and unpack
masked = getattr(packed, cast_str)()
unpacked, lengths_out = rnn_utils.pad_packed_sequence(masked)
self.assertEqual(unpacked.type(), expected_type_str)
def test_wrong_order(self):
a = torch.ones(25, 300)
b = torch.ones(22, 300)
b_a = rnn_utils.pad_sequence([b, a])
self.assertRaises(
RuntimeError,
lambda: rnn_utils.pack_padded_sequence(b_a, [22, 25], enforce_sorted=True))
def test_total_length(self):
padded, lengths = self._padded_sequence(torch.FloatTensor)
max_length = max(lengths)
packed = rnn_utils.pack_padded_sequence(padded, lengths)
# test ValueError if total_length < max_length
for total_length in (-1, 0, max_length - 1):
for batch_first in (True, False):
def err_fn():
rnn_utils.pad_packed_sequence(packed, batch_first=batch_first,
total_length=total_length)
self.assertRaisesRegex(ValueError,
r'Expected total_length to be at least the '
r'length of the longest sequence in input',
err_fn)
# test that pad_packed_sequence returns results of correct length
for batch_first in (True, False):
no_extra_pad, _ = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first)
for total_length_delta in (0, 1, 8):
total_length = max_length + total_length_delta
unpacked, lengths_out = rnn_utils.pad_packed_sequence(packed, batch_first=batch_first,
total_length=total_length)
self.assertEqual(lengths, lengths_out)
self.assertEqual(unpacked.size(1 if batch_first else 0), total_length)
if total_length_delta == 0:
ref_output = no_extra_pad
elif batch_first:
extra_pad = no_extra_pad.new_zeros(self.batch_size, total_length_delta)
ref_output = torch.cat([no_extra_pad, extra_pad], 1)
else:
extra_pad = no_extra_pad.new_zeros(total_length_delta, self.batch_size)
ref_output = torch.cat([no_extra_pad, extra_pad], 0)
self.assertEqual(unpacked, ref_output)
def test_to(self):
for enforce_sorted in (True, False):
padded, lengths = self._padded_sequence(torch.IntTensor)
a = rnn_utils.pack_padded_sequence(
padded, lengths, enforce_sorted=enforce_sorted).cpu()
self.assertIs(a, a.to('cpu'))
self.assertIs(a, a.cpu())
self.assertIs(a, a.to('cpu', dtype=torch.int32))
self.assertEqual(a.long(), a.to(torch.int64))
if torch.cuda.is_available():
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
b = a.cuda(device=cuda)
self.assertIs(b, b.to(cuda))
self.assertIs(b, b.cuda())
self.assertEqual(a, b.to('cpu'))
self.assertEqual(b, a.to(cuda))
self.assertEqual(a, b.to('cpu', dtype=torch.int32))
self.assertIs(b, b.to(dtype=torch.int32))
self.assertEqual(b.long(), b.to(dtype=torch.int64))
def test_to_memory_format(self):
m = torch.nn.Conv2d(in_channels=16, out_channels=32, kernel_size=2, bias=True)
m = m.to(memory_format=torch.channels_last)
for param in m.parameters():
if param.dim() == 4:
self.assertTrue(param.is_contiguous(memory_format=torch.channels_last))
class TestAvgPool(TestCase):
def _sum_pool2d(self, x, kernel_size):
windows = torch.nn.functional.unfold(x, kernel_size=kernel_size, stride=kernel_size)
return torch.sum(windows, dim=1)
def _sum_pool3d(self, x, kernel_size):
# Because unfold does not support 3D sliding window we will split tensor to multiple tensors and calculate sum
h = kernel_size[0]
splited_x = [t.sum(0) for t in x.split(h) if t.size(0) == h]
# sum_pool2d assumes tensor in (1, 1, n, m) view, so unsqueeze two times
splited_x = [self._sum_pool2d(t.unsqueeze(0).unsqueeze(0), kernel_size[1:]) for t in splited_x]
joined_x = torch.cat(splited_x)
return joined_x.view(1, joined_x.numel())
def _avg_pool2d(self, x, kernel_size):
size = reduce((lambda x, y: x * y), kernel_size)
return self._sum_pool2d(x, kernel_size) / size
def _avg_pool3d(self, x, kernel_size):
size = reduce((lambda x, y: x * y), kernel_size)
return self._sum_pool3d(x, kernel_size) / size
def test_doubletensor_avg_pool2d(self):
n, m = 5, 8
input = torch.rand(1, 1, n, m)
for i in range(1, n + 1):
for j in range(1, m + 1):
actual = torch.nn.functional.avg_pool2d(input[0], (i, j))
actual = actual.view(1, actual.numel())
expected = self._avg_pool2d(input, (i, j))
self.assertTrue(torch.allclose(actual, expected, rtol=0, atol=1e-5))
def test_avg_pool2d_with_zero_divisor(self):
self.assertRaisesRegex(RuntimeError, "divisor must be not zero",
lambda: F.avg_pool2d(torch.zeros(3, 3, 3), (2, 2), divisor_override=0))
def test_doubletensor_avg_pool2d_with_divisor(self):
n, m = 3, 3
input = torch.rand(1, 1, n, m)
for i in range(1, n + 1):
for j in range(1, m + 1):
for divisor in [1, 7, i * j]:
actual = F.avg_pool2d(input[0], (i, j), divisor_override=divisor)
actual = actual.view(1, actual.numel())
expected = self._sum_pool2d(input, (i, j)) / divisor
self.assertTrue(torch.allclose(actual, expected, rtol=0, atol=1e-5))
def test_doubletensor_avg_pool3d(self):
h, w, d = 5, 6, 7
input = torch.rand(h, w, d)
for i in range(1, h + 1):
for j in range(1, w + 1):
for k in range(1, d + 1):
actual = torch.nn.functional.avg_pool3d(input.unsqueeze(0), (i, j, k))
actual = actual.view(1, actual.numel())
expected = self._avg_pool3d(input, (i, j, k))
self.assertTrue(torch.allclose(actual, expected, rtol=0, atol=1e-5))
def test_doubletensor_avg_pool3d_with_divisor(self):
h, w, d = 6, 5, 7
input = torch.rand(h, w, d)
for i in range(1, h + 1):
for j in range(1, w + 1):
for k in range(1, d + 1):
for divisor in [1, 7, i * j]:
actual = torch.nn.functional.avg_pool3d(input.unsqueeze(0), (i, j, k), divisor_override=divisor)
actual = actual.view(1, actual.numel())
expected = self._sum_pool3d(input, (i, j, k)) / divisor
self.assertTrue(torch.allclose(actual, expected, rtol=0, atol=1e-5))
def test_avg_pool3d_with_zero_divisor(self):
self.assertRaisesRegex(RuntimeError, "divisor must be not zero",
lambda: F.avg_pool3d(torch.zeros(3, 3, 3, 3), (2, 2, 2), divisor_override=0))
def test_avg_pool1d_ceil_mode(self):
# Regression test for gh-36977
x = 10 * torch.randn((1, 16, 4))
y = torch.nn.functional.avg_pool1d(
x, ceil_mode=True, count_include_pad=True, kernel_size=1, stride=2)
self.assertTrue(not torch.isnan(y).any())
if TEST_CUDA:
y = torch.nn.functional.avg_pool1d(
x.to('cuda'), ceil_mode=True, count_include_pad=True, kernel_size=1, stride=2)
self.assertTrue(not torch.isnan(y).any())
def test_avg_pool2d_ceil_mode(self):
# Regression test for gh-36977
x = 10 * torch.randn((1, 16, 4, 4))
y = torch.nn.functional.avg_pool2d(
x, ceil_mode=True, count_include_pad=True, kernel_size=(1, 2),
padding=(0, 1), stride=2)
self.assertTrue(not torch.isnan(y).any())
if TEST_CUDA:
y = torch.nn.functional.avg_pool2d(
x.to('cuda'), ceil_mode=True, count_include_pad=True, kernel_size=(1, 2),
padding=(0, 1), stride=2)
self.assertTrue(not torch.isnan(y).any())
def test_avg_pool3d_ceil_mode(self):
# Regression test for gh-36977
x = 10 * torch.randn((1, 16, 4, 4, 4))
y = torch.nn.functional.avg_pool3d(
x, ceil_mode=True, count_include_pad=True, kernel_size=(1, 2, 3), stride=2)
self.assertTrue(not torch.isnan(y).any())
if TEST_CUDA:
y = torch.nn.functional.avg_pool3d(
x.to('cuda'), ceil_mode=True, count_include_pad=True, kernel_size=(1, 2, 3), stride=2)
self.assertTrue(not torch.isnan(y).any())
class TestNN(NNTestCase):
_do_cuda_memory_leak_check = True
_do_cuda_non_default_stream = True
def _forward(self, module, input: _TensorOrTensors):
with freeze_rng_state():
if isinstance(input, tuple):
return module(*input)
else:
return module(input)
def _backward(self, module, input: _TensorOrTensors, output, grad_output, create_graph=False):
output.backward(grad_output, retain_graph=True, create_graph=create_graph)
if isinstance(input, tuple):
return tuple(i.grad.data if i.grad is not None else None for i in input)
else:
return input.grad.data if input.grad is not None else None
def _forward_criterion(self, criterion, input, target, extra_args=None):
if extra_args is None:
extra_args = tuple()
if isinstance(input, tuple):
args = input + (target,) + extra_args
output = criterion(*args)
else:
output = criterion(input, target, *extra_args)
return output
def _backward_criterion(self, criterion, input, target, gradOutput=None, extra_args=None):
if extra_args is None:
extra_args = tuple()
input_tuple = input if isinstance(input, tuple) else (input,)
for i in input_tuple:
if i.grad is not None:
i.grad.data.zero_()
args = input_tuple + (target,) + extra_args
if gradOutput is None:
gradOutput = torch.ones(())
criterion(*args).backward(gradOutput.to(input_tuple[0]))
if isinstance(input, tuple):
return tuple(i.grad.data for i in input)
else:
return input.grad.data
def _zero_grad_parameters(self, module):
for p in module.parameters():
if p.grad is not None:
with torch.no_grad():
p.grad.zero_()
p.grad.detach_()
def _get_parameters(self, module):
params = []
d_params = []
for p in module.parameters():
params.append(p)
d_params.append(p.grad)
return params, d_params
def _create_basic_net(self):
class Layer(nn.Module):
def __init__(self):
super(Layer, self).__init__()
self.layer_dummy_param = Parameter(torch.Tensor(3, 5))
self.register_buffer('layer_dummy_buf', torch.zeros(1, 3, 3, 7))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = Layer()
self.dummy_param = Parameter(torch.Tensor(3, 5))
self.register_buffer('dummy_buf', torch.zeros(7, 3, 3, 1))
l = Layer()
n = Net()
s = nn.Sequential(n, n)
return l, n, s
def test_requires_grad_(self):
m = self._create_basic_net()[-1]
assert len(list(m.buffers())) > 0, 'invalid test'
assert all(not b.requires_grad for b in m.buffers()) > 0, 'invalid test'
assert len(list(m.parameters())) > 0, 'invalid test'
assert all(p.requires_grad for p in m.parameters()) > 0, 'invalid test'
for requires_grad in (False, True):
self.assertIs(m.requires_grad_(requires_grad), m)
for p in m.parameters():
self.assertEqual(p.requires_grad, requires_grad)
for b in m.buffers():
self.assertFalse(b.requires_grad)
def test_module_backcompat(self):
from torch.serialization import SourceChangeWarning
path = download_file('https://download.pytorch.org/test_data/linear.pt')
with warnings.catch_warnings():
warnings.simplefilter('ignore', SourceChangeWarning)
m = torch.load(path)
input = torch.randn(2, 3, dtype=torch.float)
self.assertEqual(m(input).size(), (2, 5))
def test_conv_backcompat(self):
from torch.serialization import SourceChangeWarning
# This file was generated by running on PyTorch 1.0.1 on Python 2:
#
# import torch
# from torch import nn
# m = nn.Conv2d(1, 1, 1)
# torch.save(m, 'legacy_conv2d.pt')
#
# NB: This Pickle also contains some Unicode data!
path = download_file('https://download.pytorch.org/test_data/legacy_conv2d.pt')
with warnings.catch_warnings():
warnings.simplefilter('ignore', SourceChangeWarning)
m = torch.load(path, encoding='utf-8')
input = torch.randn((1, 1, 1, 1), dtype=torch.float)
self.assertEqual(m(input).size(), (1, 1, 1, 1))
def test_share_memory(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.p = nn.Parameter(torch.eye(5))
self.par = nn.ParameterList()
self.par.append(nn.Parameter(torch.randn(10)))
def forward(self, inp):
# NB: dead code
return inp.clone()
net = Net()
for p in net.parameters():
self.assertFalse(p.storage().is_shared())
for b in net.buffers():
self.assertFalse(b.storage().is_shared())
net.share_memory()
for p in net.parameters():
self.assertTrue(p.storage().is_shared())
for b in net.buffers():
self.assertTrue(b.storage().is_shared())
def _test_hooks(self, backward_register_fn):
module = nn.Sigmoid()
input = torch.ones(5, 5, requires_grad=True)
counter = {
'forwards': 0,
'backwards': 0
}
def fw_hook(inc, h_module, input, output):
self.assertIsInstance(input, tuple)
self.assertTrue(isinstance(output, torch.Tensor))
self.assertTrue(h_module is module)
self.assertEqual(input[0], torch.ones(5, 5))
self.assertEqual(output, torch.Tensor(5, 5).fill_(1 / (1 + 1 / math.e)))
counter['forwards'] += inc
def bw_hook(inc, h_module, grad_input, grad_output):
self.assertIsInstance(grad_input, tuple)
self.assertIsInstance(grad_output, tuple)
self.assertTrue(h_module is module)
self.assertEqual(grad_output[0], torch.ones(5, 5) * 2)
counter['backwards'] += inc
test_fwd = module.register_forward_hook(lambda *args: fw_hook(1, *args))
module(input)
module(input)
self.assertEqual(counter['forwards'], 2)
self.assertEqual(counter['backwards'], 0)
test_bwd = getattr(module, backward_register_fn)(
lambda *args: bw_hook(1, *args))
output = module(input)
self.assertEqual(counter['forwards'], 3)
self.assertEqual(counter['backwards'], 0)
output.backward(torch.ones(5, 5) * 2, retain_graph=True)
self.assertEqual(counter['forwards'], 3)
self.assertEqual(counter['backwards'], 1)
output.backward(torch.ones(5, 5) * 2, retain_graph=True)
self.assertEqual(counter['forwards'], 3)
self.assertEqual(counter['backwards'], 2)
test2_fwd = module.register_forward_hook(lambda *args: fw_hook(2, *args))
output = module(input)
self.assertEqual(counter['forwards'], 6)
self.assertEqual(counter['backwards'], 2)
test2_bwd = getattr(module, backward_register_fn)(lambda *args: bw_hook(2, *args))
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter['forwards'], 9)
self.assertEqual(counter['backwards'], 5)
test2_bwd.remove()
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter['forwards'], 12)
self.assertEqual(counter['backwards'], 6)
test2_fwd.remove()
module(input).backward(torch.ones(5, 5) * 2)
self.assertEqual(counter['forwards'], 13)
self.assertEqual(counter['backwards'], 7)
test_fwd.remove()
test_bwd.remove()
def test_hooks(self):
self._test_hooks("register_backward_hook")
self._test_hooks("register_full_backward_hook")
def test_hook_cpp(self):
bn = nn.BatchNorm1d(5)
def hook(module, grad_inputs, grad_outputs):
self.assertEqual(len(grad_inputs), 1)
self.assertEqual(len(grad_outputs), 1)
self.assertEqual(module, bn)
bn.register_full_backward_hook(hook)
output = bn(torch.randn(5, 5, requires_grad=True))
output.sum().backward()
def test_hook_invalid_outputs(self):
module = nn.Sigmoid()
input = torch.randn(5, 5, requires_grad=True)
def bw_fail1(self, grad_input, grad_output):
return grad_input[:-1]
def bw_fail2(self, grad_input, grad_output):
return grad_input + (torch.randn(2, 2),)
with module.register_backward_hook(bw_fail1):
with self.assertRaisesRegex(RuntimeError, 'got 0, but expected 1'):
module(input).sum().backward()
with module.register_backward_hook(bw_fail2):
with self.assertRaisesRegex(RuntimeError, 'got 2, but expected 1'):
module(input).sum().backward()
def test_hook_requires_grad(self):
test_self = self
class MyModule(nn.Module):
def forward(self, arg1, arg2, arg3):
test_self.assertTrue(arg1.requires_grad)
test_self.assertFalse(arg2.requires_grad)
test_self.assertTrue(arg3.requires_grad)
return arg1.sum() + arg2.sum() + arg3.sum()
inp = torch.rand(2, requires_grad=True)
mod = MyModule()
mod(inp, inp.detach(), inp)
# Ensure that requires grad is properly propagated
mod.register_full_backward_hook(lambda mod, gI, gO: None)
mod(inp, inp.detach(), inp)
def test_hook_extra_input(self):
class MyModule(nn.Module):
def forward(self, non_tensor, tensor):
return tensor.clone(), non_tensor
inp = torch.rand(2, requires_grad=True)
mod = MyModule()
def hook(mod, grad_input, grad_output):
self.assertIsNone(grad_input[0])
self.assertIsInstance(grad_input[1], torch.Tensor)
self.assertIsInstance(grad_output[0], torch.Tensor)
self.assertIsNone(grad_output[1])
mod.register_full_backward_hook(hook)
out, _ = mod(True, inp)
out.sum().backward()
def test_hook_inplace(self):
class MyModule(nn.Module):
def forward(self, inp, do_inplace):
self.inp = inp
if do_inplace:
inp += 1
return inp.clone()
hook_called = [0]
def hook(mod, grad_input, grad_output):
hook_called[0] += 1
inp = torch.rand(10, requires_grad=True)
mod = MyModule()
mod.register_full_backward_hook(hook)
# No inplace should work
mod(inp, False).sum().backward()
self.assertEqual(hook_called[0], 1)
# Input inplace error should throw an error (warning during deprecation cycle)
with self.assertWarnsRegex(UserWarning, "Output 0 of BackwardHookFunctionBackward is "
"a view and is being modified inplace."):
mod(inp.clone(), True)
# Input inplace error should throw an error if we try to re-use the view after they have
# been modified (warning during deprecation cycle)
local_inp = inp.clone()
out = mod(local_inp, False)
local_inp[0] *= 1
with self.assertWarnsRegex(UserWarning, "Output 0 of BackwardHookFunctionBackward is "
"a view and its base or another view"):
# Any operation involving the view will fail here
mod.inp + 2
# Output inplace error should throw an error (warning during deprecation cycle)
with self.assertWarnsRegex(UserWarning, "BackwardHookFunctionBackward is a view "
"and is being modified inplace."):
# This error won't happen once the warning above is a proper error
with self.assertRaisesRegex(RuntimeError, "Module backward hook for grad_input is "
"called before the grad_output one."):
out = mod(inp, False)
out += 1
out.sum().backward()
def test_hook_non_full_warning(self):
def noop(*args):
pass
a = torch.rand(2, requires_grad=True)
b = torch.rand(2, requires_grad=True)
# Check invalid input container
class MyModule(nn.Module):
def forward(self, l):
return l[0].clone(), l[1].clone()
m = MyModule()
m.register_backward_hook(noop)
with self.assertWarnsRegex(UserWarning, "does not take as input a single Tensor or a tuple of Tensors"):
m([a, b])
# Check invalid output container
class MyModule(nn.Module):
def forward(self, a, b):
return [a.clone(), b.clone()]
m = MyModule()
m.register_backward_hook(noop)
with self.assertWarnsRegex(UserWarning, "does not return a single Tensor or a tuple of Tensors"):
m(a, b)
# Check invalid output from different Nodes
class MyModule(nn.Module):
def forward(self, a, b):
return a.clone(), b.clone()
m = MyModule()
m.register_backward_hook(noop)
with self.assertWarnsRegex(UserWarning, "outputs are generated by different autograd Nodes"):
m(a, b)
# Check invalid forward with multiple Nodes
class MyModule(nn.Module):
def forward(self, a):
return a.clone().clone()
m = MyModule()
m.register_backward_hook(noop)
with self.assertWarnsRegex(UserWarning, "the forward contains multiple autograd Nodes"):
m(a)
def test_hook_backward_size(self):
# Make module with multiple operations in forward
# And different size for input and outputs
class MyModule(nn.Module):
def forward(self, arg1, arg2):
tmp = arg1.sum() * arg2
tmp = tmp + arg2.sum() * arg1.sum()
tmp = tmp.sum().view(1)
tmp = tmp.expand(8).contiguous()
return tmp
module = MyModule()
inp1 = torch.randn(5, 5, requires_grad=True)
inp2 = torch.randn(10, 10, requires_grad=True)
def bw_hook(module, grad_input, grad_output):
self.assertEqual(len(grad_input), 2)
self.assertEqual(grad_input[0].size(), torch.Size([5, 5]))
self.assertEqual(grad_input[1].size(), torch.Size([10, 10]))
self.assertEqual(len(grad_output), 1)
self.assertEqual(grad_output[0].size(), torch.Size([8]))
with module.register_full_backward_hook(bw_hook):
module(inp1, inp2).sum().backward()
def test_hook_backward_writeable(self):
module = nn.Sigmoid()
input = torch.randn(5, 5, requires_grad=True)
sig_x = torch.nn.functional.sigmoid(input)
def bw_hook(module, grad_input, grad_output):
for grad in grad_input:
self.assertTrue(isinstance(grad, torch.Tensor))
for grad in grad_output:
self.assertTrue(isinstance(grad, torch.Tensor))
return tuple(gi * 2 for gi in grad_input)
module.register_backward_hook(bw_hook)
module(input).backward(torch.ones(5, 5))
expected_grad = sig_x * (1 - sig_x) * 2
self.assertEqual(input.grad, expected_grad)
def test_hook_forward_preforward_writable(self):
module = nn.Sigmoid()
input = torch.randn(5, 5, requires_grad=True)
sig_x = torch.nn.functional.sigmoid(input)
def forward_pre_hook(m, input):
return torch.nn.functional.relu(input[0])
def forward_hook(m, input, output):
return -output
module.register_forward_pre_hook(forward_pre_hook)
module.register_forward_hook(forward_hook)
output = module(input)
expected_res = -torch.nn.functional.sigmoid(torch.nn.functional.relu(input))
self.assertEqual(output, expected_res)
output.backward(torch.ones(5, 5) * 2, retain_graph=True)
mask = (input > 0).double()
expected_grad = -sig_x * (1 - sig_x) * 2 * mask
self.assertEqual(input.grad, expected_grad)
def test_to(self):
m = nn.Linear(3, 5)
self.assertIs(m, m.to('cpu'))
self.assertIs(m, m.to('cpu', dtype=torch.float32))
self.assertEqual(m.double(), m.to(torch.float64))
self.assertRaises(RuntimeError, lambda: m.to('cpu', copy=True))
if torch.cuda.is_available():
for cuda in ['cuda', 'cuda:0' if torch.cuda.device_count() == 1 else 'cuda:1']:
m2 = m.cuda(device=cuda)
self.assertIs(m2, m2.to(cuda))
self.assertEqual(m, m2.to('cpu'))
self.assertEqual(m2, m.to(cuda))
self.assertIs(m2, m2.to(dtype=torch.float32))
self.assertEqual(m2.double(), m2.to(dtype=torch.float64))
def test_zero_grad(self):
i = torch.randn(2, 5, requires_grad=True)
module = nn.Linear(5, 5)
for p in module.parameters():
p.requires_grad = False
module.zero_grad()
module.weight.requires_grad = True
module.zero_grad()
self.assertIsNone(module.weight.grad) # uninitialized grad
module(i).sum().backward()
self.assertIsNotNone(module.weight.grad)
self.assertGreater(module.weight.grad.data.abs().sum(), 0)
module.zero_grad()
self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_())
module.bias.requires_grad = True
module.zero_grad()
self.assertIsNotNone(module.weight.grad)
self.assertIsNone(module.bias.grad)
module(i).sum().backward()
self.assertIsNotNone(module.weight.grad)
self.assertIsNotNone(module.bias.grad)
self.assertGreater(module.weight.grad.data.abs().sum(), 0)
self.assertGreater(module.bias.grad.data.abs().sum(), 0)
module.zero_grad()
self.assertEqual(module.weight.grad.data, module.weight.data.clone().zero_())
self.assertEqual(module.bias.grad.data, module.bias.data.clone().zero_())
# Force set to None.
module.zero_grad(set_to_none=True)
self.assertIsNone(module.weight.grad)
def test_no_grad(self):
for dtype in [torch.bfloat16, torch.float, torch.double]:
module = nn.Conv2d(2, 5, kernel_size=3, padding=1).to(dtype)
input = torch.randn(1, 2, 10, 10).to(dtype)
x = input
y = input.clone()
output = module(x)
self.assertTrue(output.requires_grad)
output.backward(torch.ones(1, 5, 10, 10))
with torch.no_grad():
output2 = module(y)
self.assertFalse(output2.requires_grad)
self.assertRaises(RuntimeError, lambda: output2.backward(torch.ones(1, 5, 10, 10)))
def test_invalid_conv1d(self):
for dtype in [torch.bfloat16, torch.float, torch.double]:
module = nn.Conv1d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True).to(dtype)
input = torch.randn(1, 3, 4).to(dtype)
with self.assertRaisesRegex(RuntimeError,
r'Calculated padded input size per channel: \(4\). ' +
r'Kernel size: \(10\). Kernel size can\'t be greater than actual input size'):
module(input)
# Negative stride check
module = nn.Conv1d(in_channels=3, out_channels=6, kernel_size=3, stride=-1, bias=True).to(dtype)
input = torch.randn(1, 3, 4).to(dtype)
with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'):
module(input)
def test_mismatch_shape_conv2d(self):
x = torch.randn(1, 10, 1, 28, 28)
w = torch.randn(6, 1, 5, 5)
with self.assertRaisesRegex(RuntimeError,
r'Expected 4-dimensional input for 4-dimensional weight \[6, 1, 5, 5\],' +
r' but got 5-dimensional input of size \[1, 10, 1, 28, 28\] instead'):
F.conv2d(x, w)
def test_invalid_conv2d(self):
for dtype in [torch.bfloat16, torch.float, torch.double]:
module = torch.nn.Conv2d(1, 1, kernel_size=3, dilation=2, stride=2).to(dtype)
input = torch.empty(1, 1, 4, 4).to(dtype)
self.assertRaises(RuntimeError, lambda: module(input))
module = nn.Conv2d(in_channels=3, out_channels=33, kernel_size=10, stride=1, bias=True)
input = torch.randn(1, 3, 1, 1)
with self.assertRaisesRegex(RuntimeError,
r'Calculated padded input size per channel: \(1 x 1\). ' +
r'Kernel size: \(10 x 10\). Kernel size can\'t be greater than actual input size'):
module(input)
# Negative stride check
module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=-1, bias=True).to(dtype)
input = torch.randn(1, 3, 4, 4).to(dtype)
with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'):
module(input)
# Zero stride check
module = nn.Conv2d(in_channels=3, out_channels=6, kernel_size=4, stride=0, bias=True).to(dtype)
input = torch.randn(1, 3, 4, 4).to(dtype)
with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'):
module(input)
def test_invalid_conv3d(self):
for dtype in [torch.bfloat16, torch.float, torch.double]:
module = torch.nn.Conv3d(1, 1, kernel_size=3, dilation=2, stride=2).to(dtype)
input = torch.empty(1, 1, 4, 4, 4).to(dtype)
self.assertRaises(RuntimeError, lambda: module(input))
# Negative stride check
module = torch.nn.Conv3d(1, 1, kernel_size=3, stride=-2)
input = torch.empty(1, 1, 4, 4, 4)
with self.assertRaisesRegex(RuntimeError, 'non-positive stride is not supported'):
module(input)
def _test_alpha_dropout(self, cls, input):
mean = input.mean()
std = input.std()
for p in [0.2, 0.5, 0.8]:
module = cls(p)
input_var = input.detach().clone().requires_grad_()
output = module(input_var)
# output mean should be close to input mean
self.assertLess(abs(output.data.mean() - mean), 0.1)
# output std should be close to input std
self.assertLess(abs(output.data.std() - std), 0.1)
output.backward(input)
def test_parameters_and_named_parameters(self):
def names(named_parameters):
return [k for k, _ in named_parameters]
l, n, s = self._create_basic_net()
self.assertEqual(len(list(l.parameters())), 1)
self.assertEqual(
names(l.named_parameters()),
['layer_dummy_param'])
self.assertEqual(len(list(n.parameters())), 2)
self.assertEqual(
names(n.named_parameters()),
['dummy_param', 'l1.layer_dummy_param'])
self.assertEqual(len(list(n.parameters(recurse=False))), 1)
self.assertEqual(
names(n.named_parameters(recurse=False)),
['dummy_param'])
self.assertEqual(len(list(s.parameters())), 2)
self.assertEqual(
names(s.named_parameters()),
['0.dummy_param', '0.l1.layer_dummy_param'])
def test_buffers_and_named_buffers(self):
def names(named_buffers):
return [k for k, _ in named_buffers]
l, n, s = self._create_basic_net()
self.assertEqual(len(list(l.buffers())), 1)
self.assertEqual(
names(l.named_buffers()),
['layer_dummy_buf'])
self.assertEqual(len(list(n.buffers())), 2)
self.assertEqual(
names(n.named_buffers()),
['dummy_buf', 'l1.layer_dummy_buf'])
self.assertEqual(len(list(n.buffers(recurse=False))), 1)
self.assertEqual(
names(n.named_buffers(recurse=False)),
['dummy_buf'])
self.assertEqual(len(list(s.buffers())), 2)
self.assertEqual(
names(s.named_buffers()),
['0.dummy_buf', '0.l1.layer_dummy_buf'])
def test_call_supports_python_dict_output(self):
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = nn.Linear(10, 20)
self.register_backward_hook(self.hook)
self.check_backward_hook_flag = False
def hook(self, module, grad_out, grad_in):
self.check_backward_hook_flag = True
def forward(self, inputs):
return {"output": self.l1(inputs).sum()}
net = Net()
model_output = net(torch.randn([5, 10]))
model_output["output"].backward()
self.assertTrue(net.check_backward_hook_flag)
def test_children(self):
l1 = nn.Linear(2, 2)
l2 = nn.Linear(2, 2)
l3 = nn.Linear(2, 2)
l4 = nn.Linear(2, 2)
subnet = nn.Sequential(l3, l4)
s = nn.Sequential(l1, l2, l1, l2, subnet)
self.assertEqual(list(s.children()), [l1, l2, subnet])
def test_dir(self):
linear = nn.Linear(2, 2)
linear._test_submodule = nn.Linear(2, 2)
linear._test_parameter = Parameter(torch.Tensor(2, 2))
linear.register_buffer('_test_buffer', torch.Tensor(2, 2))
keys = dir(linear)
self.assertIn('_test_submodule', keys)
self.assertIn('_test_parameter', keys)
self.assertIn('_test_buffer', keys)
for key in keys:
self.assertTrue(hasattr(linear, key))
def test_repr(self):
# no extra information or sub-modules
empty_sequential = nn.Sequential()