forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMath.cuh
307 lines (278 loc) · 8.59 KB
/
Math.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
#pragma once
#include <ATen/AccumulateType.h>
#include <c10/macros/Macros.h>
namespace at {
namespace native {
/*
* For licensing information, please refer to the the cpu implementation located in "ATen/native/Math.h".
*/
template <typename scalar_t>
static inline __host__ __device__ scalar_t zeta(scalar_t _x, scalar_t _q) {
using accscalar_t = at::acc_type<scalar_t, true>;
static const accscalar_t MACHEP = 1.11022302462515654042E-16;
const accscalar_t A[] = {
12.0,
-720.0,
30240.0,
-1209600.0,
47900160.0,
-1.8924375803183791606e9, /*1.307674368e12/691*/
7.47242496e10,
-2.950130727918164224e12, /*1.067062284288e16/3617*/
1.1646782814350067249e14, /*5.109094217170944e18/43867*/
-4.5979787224074726105e15, /*8.028576626982912e20/174611*/
1.8152105401943546773e17, /*1.5511210043330985984e23/854513*/
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091*/
};
accscalar_t x = static_cast<accscalar_t>(_x);
accscalar_t q = static_cast<accscalar_t>(_q);
int i = 0;
accscalar_t a, b, k, s, t, w;
if( x == 1.0 ) {
return static_cast<scalar_t>(INFINITY);
}
if( x < 1.0 ){
std::numeric_limits<scalar_t>::quiet_NaN();
}
bool q_is_integer = q == ::floor(q);
if(q <= 0.0) {
if(q_is_integer) {
return static_cast<scalar_t>(INFINITY);
}
else {
std::numeric_limits<scalar_t>::quiet_NaN();
}
}
s = ::pow(q, -x);
a = q;
i = 0;
b = 0.0;
while ((i < 9) || (a <= 9.0)) {
i += 1;
a += 1.0;
b = ::pow( a, -x );
s += b;
if ((-MACHEP < (b / s)) && ((b / s) < MACHEP)) {
return static_cast<scalar_t>(s);
}
};
w = a;
s += b * w / (x - 1.0);
s -= 0.5 * b;
a = 1.0;
k = 0.0;
for (int i=0; i < 12; i++) {
a *= x + k;
b /= w;
t = a * b / A[i];
s = s + t;
t = t / s;
if (t < 0){
t = -t;
}
if ((-MACHEP <t) && (t < MACHEP)){
return static_cast<scalar_t>(s);
}
k += 1.0;
a *= x + k;
b /= w;
k += 1.0;
}
return static_cast<scalar_t>(s);
}
/*
* For licensing information, please refer to the the cpu implementation located in "ATen/native/Math.h".
*/
template <typename scalar_t>
static inline __host__ __device__ scalar_t calc_digamma(scalar_t in) {
// [C++ Standard Reference: Gamma Function] https://en.cppreference.com/w/cpp/numeric/math/tgamma
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
static const double PI_f64 = 3.14159265358979323846;
const accscalar_t PSI_10 = 2.25175258906672110764;
const accscalar_t A[] = {
8.33333333333333333333E-2,
-2.10927960927960927961E-2,
7.57575757575757575758E-3,
-4.16666666666666666667E-3,
3.96825396825396825397E-3,
-8.33333333333333333333E-3,
8.33333333333333333333E-2,
};
accscalar_t x = static_cast<accscalar_t>(in);
if (x == 0) {
// As per C++ standard for gamma related functions and SciPy,
// If the argument is ±0, ±∞ is returned
return std::copysign(static_cast<scalar_t>(INFINITY), -x);
}
bool x_is_integer = x == ::trunc(x);
accscalar_t result = 0;
if (x < 0) {
if (x_is_integer) {
// As per C++ standard for gamma related functions and SciPy,
// If the argument is a negative integer, NaN is returned
return static_cast<scalar_t>(NAN);
}
// Rounding errors in tan's input can really affect the output
// for extreme values, so we always perform this computation in double.
result = static_cast<accscalar_t>(- PI_f64 / ::tan(PI_f64 * static_cast<double>(x)));
x = 1 - x;
}
while (x < 10) {
result -= 1 / x;
x += 1;
}
if (x == 10) {
return static_cast<scalar_t>(result + PSI_10);
}
accscalar_t y = 0;
if (x < 1.0e17) {
accscalar_t z = 1 / (x * x);
accscalar_t polevl_result = 0;
for (int i = 0; i <= 6; i++) {
polevl_result = polevl_result * z + A[i];
}
y = z * polevl_result;
}
return static_cast<scalar_t>(::log(x) - (static_cast<accscalar_t>(0.5) / x) - y + result);
}
template <typename scalar_t>
static inline __host__ __device__ scalar_t calc_trigamma(scalar_t in) {
using accscalar_t = at::acc_type<scalar_t, /*is_cuda=*/true>;
const accscalar_t PI = 3.14159265358979323846;
accscalar_t x = static_cast<accscalar_t>(in);
accscalar_t sign = +1;
accscalar_t result = 0;
if (x < 0.5f) {
sign = -1;
accscalar_t sin_pi_x = ::sin(PI * x);
result -= (PI * PI) / (sin_pi_x * sin_pi_x);
x = 1 - x;
}
for (int i = 0; i < 6; ++i) {
result += 1 / (x * x);
x += 1;
}
const accscalar_t one = static_cast<scalar_t>(1);
const accscalar_t ixx = 1 / (x*x);
result += (1 + 1 / (2*x) + ixx * (one/6 - ixx * (one/30 - ixx * (one/42)))) / x;
return static_cast<scalar_t>(sign * result);
}
template <typename scalar_t>
static inline __host__ __device__ scalar_t calc_polygamma(int n, scalar_t x) {
// already blocked if n <= 1
return ((n % 2) ? 1.0 : -1.0) * ::exp(::lgamma(static_cast<scalar_t>(n) + 1.0)) * zeta(static_cast<scalar_t>(n + 1), x);
}
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_gcd(scalar_t a_in, scalar_t b_in) {
scalar_t a = ::abs(a_in);
scalar_t b = ::abs(b_in);
while (a != 0) {
scalar_t c = a;
a = b % a;
b = c;
}
return b;
}
/*
* For licensing information and documentation, please refer to the the cpu implementation located in "ATen/native/Math.h".
*/
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t chbevl(scalar_t _x, const scalar_t array[], size_t len) {
using accscalar_t = at::acc_type<scalar_t, true>;
accscalar_t x = static_cast<accscalar_t>(_x);
accscalar_t b0, b1, b2;
b0 = static_cast<accscalar_t>(array[0]);
b1 = 0;
for (size_t i = 1; i < len; ++i) {
b2 = b1;
b1 = b0;
b0 = x * b1 - b2 + static_cast<accscalar_t>(array[i]);
}
return static_cast<scalar_t>(0.5 * (b0 - b2));
}
/*
* For licensing information and documentation, please refer to the the cpu implementation located in "ATen/native/Math.h".
*/
template <typename scalar_t>
static inline C10_HOST_DEVICE scalar_t calc_i0(scalar_t _x) {
using accscalar_t = at::acc_type<scalar_t, true>;
// Upcast input for numerical accuracy purposes
// Needed for accurate results if input is bfloat16 or float16
accscalar_t x = ::abs(static_cast<accscalar_t>(_x));
/* Chebyshev coefficients for exp(-x) I0(x)
* in the interval [0,8].
*
* lim(x->0){ exp(-x) I0(x) } = 1.
*/
const accscalar_t A[] = {
-4.41534164647933937950E-18,
3.33079451882223809783E-17,
-2.43127984654795469359E-16,
1.71539128555513303061E-15,
-1.16853328779934516808E-14,
7.67618549860493561688E-14,
-4.85644678311192946090E-13,
2.95505266312963983461E-12,
-1.72682629144155570723E-11,
9.67580903537323691224E-11,
-5.18979560163526290666E-10,
2.65982372468238665035E-9,
-1.30002500998624804212E-8,
6.04699502254191894932E-8,
-2.67079385394061173391E-7,
1.11738753912010371815E-6,
-4.41673835845875056359E-6,
1.64484480707288970893E-5,
-5.75419501008210370398E-5,
1.88502885095841655729E-4,
-5.76375574538582365885E-4,
1.63947561694133579842E-3,
-4.32430999505057594430E-3,
1.05464603945949983183E-2,
-2.37374148058994688156E-2,
4.93052842396707084878E-2,
-9.49010970480476444210E-2,
1.71620901522208775349E-1,
-3.04682672343198398683E-1,
6.76795274409476084995E-1
};
/* Chebyshev coefficients for exp(-x) sqrt(x) I0(x)
* in the inverted interval [8,infinity].
*
* lim(x->inf){ exp(-x) sqrt(x) I0(x) } = 1/sqrt(2pi).
*/
const accscalar_t B[] = {
-7.23318048787475395456E-18,
-4.83050448594418207126E-18,
4.46562142029675999901E-17,
3.46122286769746109310E-17,
-2.82762398051658348494E-16,
-3.42548561967721913462E-16,
1.77256013305652638360E-15,
3.81168066935262242075E-15,
-9.55484669882830764870E-15,
-4.15056934728722208663E-14,
1.54008621752140982691E-14,
3.85277838274214270114E-13,
7.18012445138366623367E-13,
-1.79417853150680611778E-12,
-1.32158118404477131188E-11,
-3.14991652796324136454E-11,
1.18891471078464383424E-11,
4.94060238822496958910E-10,
3.39623202570838634515E-9,
2.26666899049817806459E-8,
2.04891858946906374183E-7,
2.89137052083475648297E-6,
6.88975834691682398426E-5,
3.36911647825569408990E-3,
8.04490411014108831608E-1
};
if (x <= 8.0) {
accscalar_t y = static_cast<accscalar_t>((x / 2.0) - 2.0);
return static_cast<scalar_t>(::exp(x) * chbevl(y, A, 30));
}
return static_cast<scalar_t>(::exp(x) * chbevl(static_cast<accscalar_t>(32.0 / x - 2.0), B, 25) / ::sqrt(x));
}
}
}