forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLossCTC.cu
773 lines (706 loc) · 37.1 KB
/
LossCTC.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
// Copyright (c) 2018 MathInf GmbH, Thomas Viehmann
// Licensed under the BSD-3-Clause license
// This is the GPU implementation of the Connectionist Temporal Loss.
// We mostly follow Graves.
// 1. Graves et al: http://www.cs.toronto.edu/~graves/icml_2006.pdf
// We use the equations from above link, but note that [1] has 1-based indexing and we (of course) use 0-based.
// Graves et al call the probabilities y, we use log_probs (also calling them inputs)
// A few optimizations (similar to those here, but also some I didn't take) are described in
// 2. Minmin Sun: http://on-demand.gputechconf.com/gtc/2016/presentation/s6383-minmin-sun-speech-recognition.pdf
#include <ATen/TensorUtils.h>
#include <c10/util/Exception.h>
#include <c10/macros/Macros.h>
#include <ATen/ATen.h>
#include <ATen/Dispatch.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <THC/THCAtomics.cuh>
#include <type_traits>
#include <numeric>
namespace at {
namespace native {
namespace {
// this ad-hoc converts from targets (l in [1]) to augmented targets (l' in [1])
// so if l is l_0 l_1 ... l_(tl-1) then this looks up idx in
// l' = BLANK l_0 BLANK l_1 BLANK ... BLANK l_(tl-1) BLANK
// - note that no bound-checking is done
// - it is important to only call it witth idx == 0 if the target length is 0
// - __restrict__ impact to be measured, see
// https://devblogs.nvidia.com/cuda-pro-tip-optimize-pointer-aliasing/
template <typename target_t>
__device__ static inline int64_t get_target_prime(
const target_t* __restrict__ target,
int64_t offset,
int64_t stride,
int64_t idx,
int64_t BLANK) {
if (idx % 2 == 0) {
return BLANK;
} else {
return target[offset + stride * (idx / 2)];
}
}
// this kernel is a relatively straightforward implementation of the alpha calculation in the forward backward algorithm (section 4.1).
// A (minor) twist is that we are using log-calculations to enhance numerical stability (log_probs and log_alpha).
// In total it would be more efficient to compute the beta in the same kernel (e.g. cudnn does this). While the beta are not
// needed for the loss itself (just the grad), we can return log_alpha+log_beta (so same space as currently) and the overhead
// is small and the use-case for loss without grad is relatively limited.
// We parallelize by batch and target sequence. Empirically, it is faster to loop over the input (log probs) sequence and do
// target in parallel, even if it means more frequent __syncthreads.
// In contrast to the cuDNN implementation, we allow large target lengths. For this we need that all previous `s` have been
// computed when we start a new block_s. This is why we have our own for loop here.
template<typename scalar_t, typename target_t>
__global__ void
#if defined (__HIP_PLATFORM_HCC__)
C10_LAUNCH_BOUNDS_2((std::is_same<scalar_t, float>::value ? 1024 : 896), 1)
#endif
ctc_loss_log_alpha_gpu_kernel(scalar_t* __restrict__ log_alpha_data,
const scalar_t*log_probs_data, const int64_t* __restrict__ input_lengths, int64_t max_input_length,
const target_t* __restrict__ targets_data, const int64_t* __restrict__ target_lengths, int64_t max_target_length,
scalar_t* __restrict__ neg_log_likelihood_data,
int64_t lp_input_stride, int64_t lp_batch_stride, int64_t lp_char_stride,
int64_t la_batch_stride, int64_t la_input_stride, int64_t la_target_stride,
const int64_t* __restrict__ tg_batch_offsets, int64_t tg_target_stride,
int64_t batch_size, int64_t BLANK) {
constexpr scalar_t neginf = -INFINITY;
// bookkeeping
int64_t b = threadIdx.y + blockIdx.y * blockDim.y;
int64_t input_length = input_lengths[b];
int64_t target_length = target_lengths[b];
int64_t lp_batch_offset = b*lp_batch_stride;
int64_t la_batch_offset = b*la_batch_stride;
int64_t tg_batch_offset = tg_batch_offsets[b];
if (b >= batch_size)
return;
// first row (t=0), the three equations for alpha_1 above eq (6)
for (int64_t block_s = 0; block_s < 2*max_target_length+1; block_s += blockDim.x) {
int64_t s = threadIdx.x + block_s;
scalar_t la;
switch (s) {
case 0:
la = log_probs_data[lp_batch_offset + lp_char_stride * BLANK];
break;
case 1:
la = target_length == 0 ? neginf
: log_probs_data
[lp_batch_offset +
lp_char_stride *
get_target_prime(
targets_data,
tg_batch_offset,
tg_target_stride,
1,
BLANK)];
break;
default:
la = neginf;
}
if (s < 2*max_target_length+1)
log_alpha_data[la_batch_offset + /* la_input_stride * 0 */ + la_target_stride * s] = la;
}
for (int64_t block_s = 0; block_s < 2*max_target_length+1; block_s += blockDim.x) {
int64_t s = threadIdx.x + block_s;
// These two only depend on s, so we can cache them.
int64_t current_char; // l_s in eq (6)
bool have_three; // flag which of the two cases in eq (6) we have
if (s < 2 * target_length + 1 && target_length > 0) {
current_char = get_target_prime(
targets_data,
tg_batch_offset,
tg_target_stride,
s,
BLANK);
have_three =
((s > 1) &&
(get_target_prime(
targets_data,
tg_batch_offset,
tg_target_stride,
s - 2,
BLANK) != current_char));
} else {
current_char = BLANK;
have_three = false;
}
for (int64_t t=1; t < max_input_length; t++) {
__syncthreads(); // on cuda 9 we might use partial synchronization of only the threads within the same batch
if ((t < input_length) && (s < 2 * target_length + 1)) {
// only for valid t, s. This is equation (6) and (7), la1, la2, la3 are the three summands,
// lamax is the maximum for the logsumexp trick.
scalar_t la1 = log_alpha_data[la_batch_offset + la_input_stride * (t-1) + la_target_stride * s];
scalar_t lamax = la1;
scalar_t la2, la3;
if (s > 0) {
la2 = log_alpha_data[la_batch_offset + la_input_stride * (t-1) + la_target_stride * (s-1)];
if (la2 > lamax)
lamax = la2;
} else {
la2 = neginf;
}
if (have_three) {
la3 = log_alpha_data[la_batch_offset + la_input_stride * (t-1) + la_target_stride * (s-2)];
if (la3 > lamax)
lamax = la3;
} else {
la3 = neginf;
}
if (lamax == neginf) // when all are neginf. (then the whole thing is neginf, but we can pretend)
lamax = 0;
log_alpha_data[la_batch_offset + la_input_stride * t + la_target_stride * s] = std::log(std::exp(la1-lamax)+std::exp(la2-lamax)+std::exp(la3-lamax))+lamax
+ log_probs_data[lp_batch_offset + t * lp_input_stride + lp_char_stride * current_char];
} else {
// otherwise we just set to neginf
if (s < 2*max_target_length+1)
log_alpha_data[la_batch_offset + la_input_stride * t + la_target_stride * s] = neginf;
}
}
}
__syncthreads(); // on cuda 9 we might use partial synchronization of only the threads within the same batch
// compute the loss (eq (8))
if (threadIdx.x == 0) {
scalar_t l1 = log_alpha_data[la_batch_offset + la_input_stride * (input_length-1) + la_target_stride * (target_length*2)];
scalar_t l2 = target_length > 0
? log_alpha_data
[la_batch_offset + la_input_stride * (input_length - 1) +
la_target_stride * (target_length * 2 - 1)]
: neginf;
scalar_t m = ((l1 > l2) ? l1 : l2);
m = ((m == neginf) ? 0 : m);
scalar_t log_likelihood = std::log(std::exp(l1-m)+std::exp(l2-m))+m;
neg_log_likelihood_data[b] = -log_likelihood;
}
}
// The forward computation. Lot's of admin and a call to the alpha kernel.
// Note: we do not check that the labels are in the valid range. As we use
// them for indexing in the kernels, you'll see memory errors when you
// pass corrupt labels.
// We support both a 2-dimensional tensor as targets (one set of targets in each row) and
// a 1-dimensional tensor where all targets are concatenated (and we use target_lengths
// to figure out where they begin).
// We return log_alpha (currently, might change to (log_alpha+log_beta) to be passed to the
// backward. The dispatch function will only return the loss.
template<typename scalar_t, ScalarType target_scalar_type>
std::tuple<Tensor, Tensor> ctc_loss_gpu_template(const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t BLANK) {
// log_probs: input_len x batch_size x num_labels
// targets [int64]: batch_size x target_length OR sum(target_lengths)
CheckedFrom c = "ctc_loss_gpu";
using target_t = typename std::conditional<target_scalar_type == kInt, int, int64_t>::type;
auto log_probs_arg = TensorArg(log_probs, "log_probs", 1);
auto targets_arg = TensorArg(targets, "targets", 2);
checkAllSameGPU(c, {log_probs_arg, targets_arg});
checkScalarType(c, targets_arg, target_scalar_type);
checkDim(c, log_probs_arg, 3);
checkDimRange(c, targets_arg, 1, 3);
int64_t batch_size = log_probs.size(1);
int64_t num_labels = log_probs.size(2);
TORCH_CHECK((0 <= BLANK) && (BLANK < num_labels), "blank must be in label range");
TORCH_CHECK(input_lengths.size() == batch_size, "input_lengths must be of size batch_size");
TORCH_CHECK(target_lengths.size() == batch_size, "target_lengths must be of size batch_size");
int64_t lp_input_stride = log_probs.stride(0);
int64_t lp_char_stride = log_probs.stride(2);
int64_t tg_target_stride;
int64_t max_target_length = 0;
auto tg_batch_offsets = at::empty({batch_size}, at::device(at::kCPU).dtype(at::kLong));
auto tg_batch_offsets_data = tg_batch_offsets.data_ptr<int64_t>();
if (targets.dim() == 1) { // concatenated targets
int64_t pos = 0;
for (int64_t i = 0; i < batch_size; i++) {
tg_batch_offsets_data[i] = pos;
pos += target_lengths[i];
if (max_target_length < target_lengths[i])
max_target_length = target_lengths[i];
}
tg_target_stride = targets.stride(0);
checkSize(c, targets_arg, 0, pos);
}
else { // batch x max_target_length
// dim is 2
int64_t tg_batch_stride = targets.stride(0);
for (int64_t i = 0; i < batch_size; i++) {
tg_batch_offsets_data[i] = i * tg_batch_stride;
if (max_target_length < target_lengths[i])
max_target_length = target_lengths[i];
}
tg_target_stride = targets.stride(1);
checkSize(c, targets_arg, 0, batch_size);
TORCH_CHECK(targets.size(1) >= max_target_length,
"Expected tensor to have size at least ", max_target_length, " at dimension 1, but got size ", targets.size(1), " for ", targets_arg,
" (while checking arguments for ", c, ")");
}
int64_t max_input_length = log_probs.size(0);
for (int64_t b = 0; b < batch_size; b++) {
TORCH_CHECK(input_lengths[b] <= max_input_length,
"Expected input_lengths to have value at most ", max_input_length, ", but got value ", input_lengths[b],
" (while checking arguments for ", c, ")");
}
auto target_lengths_t = at::tensor(target_lengths, targets.options().dtype(kLong));
auto input_lengths_t = at::tensor(input_lengths, targets.options().dtype(kLong));
tg_batch_offsets = tg_batch_offsets.cuda();
Tensor log_alpha = at::empty({batch_size, log_probs.size(0), 2*max_target_length+1}, log_probs.options());
Tensor neg_log_likelihood = at::empty({batch_size}, log_probs.options());
// Very likely, we could be more clever here, e.g. learning (or genralizing and reusing) from SoftMax.cu...
constexpr int max_threads = std::is_same<scalar_t, float>::value ? 1024 : 896; // we need 72 or so 32 bit registers for double
int threads_target = max_threads;
while (threads_target / 2 >= 2*max_target_length+1) {
threads_target /= 2;
}
int threads_batch = std::min(max_threads / threads_target, (int) batch_size);
dim3 block(threads_target, threads_batch);
dim3 grid((2*max_target_length+1 + threads_target-1)/threads_target, (batch_size+threads_batch-1)/threads_batch);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
ctc_loss_log_alpha_gpu_kernel<scalar_t, target_t><<<grid, block, 0, stream>>>(
log_alpha.data_ptr<scalar_t>(),
log_probs.data_ptr<scalar_t>(), input_lengths_t.data_ptr<int64_t>(), log_probs.size(0),
targets.data_ptr<target_t>(), target_lengths_t.data_ptr<int64_t>(), max_target_length,
neg_log_likelihood.data_ptr<scalar_t>(),
log_probs.stride(0), log_probs.stride(1), log_probs.stride(2),
log_alpha.stride(0), log_alpha.stride(1), log_alpha.stride(2),
tg_batch_offsets.data_ptr<int64_t>(), tg_target_stride,
batch_size, BLANK);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return std::make_tuple(neg_log_likelihood, log_alpha);
}
// The second (backward) half of the forward backward algorithm, (10) and (11). This is parallel to the
// alpha kernel above. (As mentioned above, it might make sense do the calculation in the alpha kernel.)
template<typename scalar_t, typename target_t>
__global__ void
C10_LAUNCH_BOUNDS_2((std::is_same<scalar_t, float>::value ? 1024 : 896), 1)
ctc_loss_backward_log_beta_gpu_kernel(scalar_t* __restrict__ log_beta_data,
const scalar_t*log_probs_data, const int64_t* __restrict__ input_lengths, int64_t max_input_length,
const target_t* __restrict__ targets_data, const int64_t* __restrict__ target_lengths, int64_t max_target_length,
int64_t lp_input_stride, int64_t lp_batch_stride, int64_t lp_char_stride,
int64_t lb_batch_stride, int64_t lb_input_stride, int64_t lb_target_stride,
const int64_t* __restrict__ tg_batch_offsets, int64_t tg_target_stride,
int64_t batch_size, int64_t BLANK) {
constexpr scalar_t neginf = -INFINITY;
int64_t b = threadIdx.y + blockIdx.y * blockDim.y;
int64_t input_length = input_lengths[b];
int64_t target_length = target_lengths[b];
int64_t lp_batch_offset = b*lp_batch_stride;
int64_t lb_batch_offset = b*lb_batch_stride;
int64_t tg_batch_offset = tg_batch_offsets[b];
if (b >= batch_size)
return;
// "first" row, the beta initiaization before eq (10) (t=target_length - differes per batch)
for (int64_t block_s = 2*max_target_length - (2*max_target_length % blockDim.x); block_s >= 0; block_s -= blockDim.x) {
int64_t s = threadIdx.x + block_s;
scalar_t lb;
if (s == 2*target_length) {
lb = log_probs_data[lp_batch_offset + (input_length-1) * lp_input_stride + lp_char_stride * BLANK];
} else if (s == 2 * target_length - 1) { // false for target_length == 0
int64_t current_target_prime = get_target_prime(
targets_data,
tg_batch_offset,
tg_target_stride,
s,
BLANK);
lb = log_probs_data[lp_batch_offset + (input_length-1) * lp_input_stride + lp_char_stride * current_target_prime];
} else {
lb = neginf;
}
if (s < 2*max_target_length+1) {
log_beta_data[lb_batch_offset + (input_length-1) * lb_input_stride + lb_target_stride * s] = lb;
}
}
// go backward in s
for (int64_t block_s = 2*max_target_length - (2*max_target_length % blockDim.x); block_s >= 0; block_s -= blockDim.x) {
int64_t s = threadIdx.x + block_s;
int64_t current_target_prime;
bool have_three;
if (s < 2 * target_length + 1 && target_length > 0) {
current_target_prime = get_target_prime(
targets_data,
tg_batch_offset,
tg_target_stride,
s,
BLANK);
have_three =
((s < 2 * target_length - 1) &&
(get_target_prime(
targets_data,
tg_batch_offset,
tg_target_stride,
s + 2,
BLANK) != current_target_prime));
} else {
current_target_prime = BLANK;
have_three = false;
}
// now go backward in t. Note that we need to skip the last timestep that we did above.
for (int64_t t=max_input_length-2; t>=0; t--) {
__syncthreads(); // on cuda 9 we might use partial synchronization of only the threads within the same batch item
if ((t < input_length - 1) && (s < 2 * target_length + 1)) {
scalar_t lb1 = log_beta_data[lb_batch_offset + lb_input_stride * (t+1) + lb_target_stride * s];
scalar_t lbmax = lb1;
scalar_t lb2, lb3;
if (s < 2*target_length) {
lb2 = log_beta_data[lb_batch_offset + lb_input_stride * (t+1) + lb_target_stride * (s+1)];
if (lb2 > lbmax)
lbmax = lb2;
} else {
lb2 = neginf;
}
if (have_three) {
lb3 = log_beta_data[lb_batch_offset + lb_input_stride * (t+1) + lb_target_stride * (s+2)];
if (lb3 > lbmax)
lbmax = lb3;
} else {
lb3 = neginf;
}
if (lbmax == neginf)
lbmax = 0;
scalar_t lb = std::log(std::exp(lb1-lbmax)+std::exp(lb2-lbmax)+std::exp(lb3-lbmax))+lbmax
+ log_probs_data[lp_batch_offset + t * lp_input_stride + lp_char_stride * current_target_prime];
log_beta_data[lb_batch_offset + lb_input_stride * t + lb_target_stride * s] = lb;
} else if (
(s < 2 * max_target_length + 1) &&
(((target_length == 0) && (s > 0)) || (s >= 2 * target_length + 1) ||
(t >= input_length))) {
log_beta_data
[lb_batch_offset + lb_input_stride * t + lb_target_stride * s] =
neginf;
}
}
}
}
// This implements the subtrahend of equation (16) for all *nonblank* characters.
// It assumes you have probs in gradient_data when called
// and it modifies gradient_data to be, the gradient.
// In order to facilitate this inplace update, We don't actually do this in logspace.
// (The other variant implemented uses log_space and the differences seem to be
// not so problematic at least with unit normal distributed test activations.)
// Internally this uses atomicAdd because different threads may write to the same
// gradient position.
// This is parallelised over b and s again.
// Note that for us, the Z of eqn (16) is actually constant for all t and it is the
// likelihood - this is why we use the negative log likelihood below.
// We also multiply by the input gradient to keep with standard autograd style.
// I took this trick from [2], for moderate alphabet sizes a log-space
// calculation (with an atomic log add) is similarly in performance, but for large
// alphabets the inplace nature is a considerable advantage.
template<typename scalar_t, typename target_t>
__global__ void
#if defined (__HIP_PLATFORM_HCC__)
C10_LAUNCH_BOUNDS_2((std::is_same<scalar_t, float>::value ? 1024 : 896), 1)
#endif
ctc_loss_backward_collect_nonblank_gpu_kernel(scalar_t* __restrict__ gradient_data,
const scalar_t* __restrict__ grad_out_data, int64_t grad_out_batch_stride,
const scalar_t* __restrict__ log_alpha_data, const scalar_t* __restrict__ log_beta_data,
const scalar_t*log_probs_data, const int64_t* __restrict__ input_lengths, int64_t max_input_length,
const target_t* __restrict__ targets_data, const int64_t* __restrict__ target_lengths, int64_t max_target_length,
const scalar_t* __restrict__ neg_log_likelihood_data,
int64_t gr_input_stride, int64_t gr_batch_stride, int64_t gr_char_stride,
int64_t lp_input_stride, int64_t lp_batch_stride, int64_t lp_char_stride,
int64_t la_batch_stride, int64_t la_input_stride, int64_t la_target_stride,
int64_t lb_batch_stride, int64_t lb_input_stride, int64_t lb_target_stride,
const int64_t* __restrict__ tg_batch_offsets, int64_t tg_target_stride,
int64_t batch_size, int64_t num_labels, int64_t BLANK, bool zero_infinity) {
int64_t b = threadIdx.y + blockIdx.y * blockDim.y;
int64_t s = threadIdx.x + blockIdx.x * blockDim.x; // note, this directly indexes into targets, not targets prime!
if (b >= batch_size)
return;
int64_t input_length = input_lengths[b];
int64_t target_length = target_lengths[b];
int64_t gr_batch_offset = b*gr_batch_stride;
int64_t lp_batch_offset = b*lp_batch_stride;
int64_t la_batch_offset = b*la_batch_stride;
int64_t lb_batch_offset = b*lb_batch_stride;
int64_t tg_batch_offset = tg_batch_offsets[b];
if (s >= target_length)
return;
int64_t target = targets_data[tg_batch_offset + s * tg_target_stride];
scalar_t nll = neg_log_likelihood_data[b];
scalar_t gr = grad_out_data[b * grad_out_batch_stride];
if (zero_infinity && nll == INFINITY)
return;
for (int64_t t = 0; t < input_length; t++) {
scalar_t lp = log_probs_data[lp_batch_offset + t * lp_input_stride + lp_char_stride * target];
gpuAtomicAdd(&gradient_data[gr_batch_offset + t * gr_input_stride + gr_char_stride * target],
-std::exp(log_alpha_data[la_batch_offset + la_input_stride * t + la_target_stride * (s*2+1)]
+ log_beta_data[lb_batch_offset + lb_input_stride * t + lb_target_stride * (s*2+1)]
+ nll - lp) * gr);
}
}
// This is the naive implementation of equation (16). It is parallelised in batch and input timestep.
// It appears to be faster than the above method for small batch sizes.
template<typename scalar_t, typename target_t>
__global__ void
#if defined (__HIP_PLATFORM_HCC__)
C10_LAUNCH_BOUNDS_2((std::is_same<scalar_t, float>::value ? 1024 : 896), 1)
#endif
ctc_loss_backward_collect_gpu_kernel(scalar_t* __restrict__ gradient_data,
const scalar_t* __restrict__ grad_out_data, int64_t grad_out_batch_stride,
const scalar_t* __restrict__ log_alpha_data, const scalar_t* __restrict__ log_beta_data,
const scalar_t*log_probs_data, const int64_t* __restrict__ input_lengths, int64_t max_input_length,
const target_t* __restrict__ targets_data, const int64_t* __restrict__ target_lengths, int64_t max_target_length,
const scalar_t* __restrict__ neg_log_likelihood_data,
int64_t gr_input_stride, int64_t gr_batch_stride, int64_t gr_char_stride,
int64_t lp_input_stride, int64_t lp_batch_stride, int64_t lp_char_stride,
int64_t la_batch_stride, int64_t la_input_stride, int64_t la_target_stride,
int64_t lb_batch_stride, int64_t lb_input_stride, int64_t lb_target_stride,
const int64_t* __restrict__ tg_batch_offsets, int64_t tg_target_stride,
int64_t batch_size, int64_t num_labels, int64_t BLANK, bool zero_infinity) {
constexpr scalar_t neginf = -INFINITY;
int64_t b = threadIdx.y + blockIdx.y * blockDim.y;
int64_t t = threadIdx.x + blockIdx.x * blockDim.x;
if ((t >= max_input_length) || (b >= batch_size))
return;
int64_t input_length = input_lengths[b];
int64_t target_length = target_lengths[b];
int64_t gr_batch_offset = b*gr_batch_stride;
int64_t lp_batch_offset = b*lp_batch_stride;
int64_t la_batch_offset = b*la_batch_stride;
int64_t lb_batch_offset = b*lb_batch_stride;
int64_t tg_batch_offset = tg_batch_offsets[b];
// collected[b, t, target'[s]] "log+=" log_alpha[t, s]+log_beta[t, s]
for (int s = 0; s < 2*max_target_length+1; s++) {
if (s < 2 * target_length + 1) { // if target_length == 0, s == 0
int64_t current_target_prime = get_target_prime(
targets_data,
tg_batch_offset,
tg_target_stride,
s,
BLANK);
scalar_t log_alpha_beta = (log_alpha_data[la_batch_offset + la_input_stride * t + la_target_stride * s]
+ log_beta_data[lb_batch_offset + lb_input_stride * t + lb_target_stride * s]);
scalar_t& lcab = gradient_data[gr_batch_offset + t * gr_input_stride + gr_char_stride * current_target_prime];
if (lcab == neginf) {
lcab = log_alpha_beta;
} else {
scalar_t max = ((lcab > log_alpha_beta) ? lcab : log_alpha_beta);
lcab = std::log(std::exp(lcab-max)+std::exp(log_alpha_beta-max))+max;
}
}
}
scalar_t nll = neg_log_likelihood_data[b];
scalar_t gr = grad_out_data[b * grad_out_batch_stride];
for (int64_t c = 0; c < num_labels; c++) {
scalar_t& res = gradient_data[gr_batch_offset + t * gr_input_stride + gr_char_stride * c];
if (t < input_length && (! zero_infinity || nll != INFINITY)) {
scalar_t lp = log_probs_data[lp_batch_offset + t * lp_input_stride + lp_char_stride * c];
res = (std::exp(lp)-std::exp(res + nll - lp)) * gr;
}
else {
res = 0.;
}
}
}
// This is to zero gradients which corresponding to the out-of-sequence position
// Those gradients should not be used in any model update since the input
// elements are padded
template<typename scalar_t>
__global__ void
#if defined (__HIP_PLATFORM_HCC__)
C10_LAUNCH_BOUNDS_2((std::is_same<scalar_t, float>::value ? 1024 : 896), 1)
#endif
ctc_loss_zero_padded_gradients(
scalar_t* __restrict__ gradient_data, /* (T, B, D) layout */
const int64_t* __restrict__ input_lengths, /* (B, ) layout */
int64_t gr_timestep_stride,
int64_t gr_batch_stride,
int64_t gr_label_stride,
int64_t max_input_length, /* T */
int64_t batch_size, /* B */
int64_t num_labels /* D */ ) {
int64_t b = threadIdx.y + blockIdx.y * blockDim.y;
int64_t t = threadIdx.x + blockIdx.x * blockDim.x;
if (b >= batch_size || t >= max_input_length) {
return;
}
scalar_t input_length = input_lengths[b];
if (t >= input_length) {
for (int l = 0; l < num_labels; l++)
gradient_data[
t * gr_timestep_stride + b * gr_batch_stride + l * gr_label_stride]
= 0.0f;
}
}
// The backward. It essentially computes eq 16 by using the above kernels.
// We don't do a lot of checking as we envision this to be called only when backpropagating through a (well-checked) forward.
template<typename scalar_t, ScalarType target_scalar_type>
Tensor ctc_loss_backward_gpu_template(const Tensor& grad_out, const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths,
const Tensor& neg_log_likelihood, const Tensor& log_alpha, int64_t BLANK, bool zero_infinity) {
constexpr scalar_t neginf = -INFINITY;
using target_t = typename std::conditional<target_scalar_type == kInt, int, int64_t>::type;
int64_t batch_size = log_probs.size(1);
int64_t num_labels = log_probs.size(2);
int64_t lp_input_stride = log_probs.stride(0);
int64_t lp_char_stride = log_probs.stride(2);
int64_t tg_target_stride;
int64_t max_target_length;
auto tg_batch_offsets = at::empty({batch_size}, TensorOptions(at::CPU(kLong)));
auto tg_batch_offsets_data = tg_batch_offsets.data_ptr<int64_t>();
if (targets.dim() == 1) { // concatenated targets
int64_t pos = 0;
max_target_length = 0;
for (int64_t i = 0; i < batch_size; i++) {
tg_batch_offsets_data[i] = pos;
pos += target_lengths[i];
if (max_target_length < target_lengths[i])
max_target_length = target_lengths[i];
}
tg_target_stride = targets.stride(0);
}
else { // batch x max_target_length
// dim is 2
int64_t tg_batch_stride = targets.stride(0);
for (int64_t i = 0; i < batch_size; i++) {
tg_batch_offsets_data[i] = i * tg_batch_stride;
}
tg_target_stride = targets.stride(1);
max_target_length = log_alpha.size(2)/2; // targets.size(1) might be larger
}
auto target_lengths_t = at::tensor(target_lengths, targets.options().dtype(kLong));
auto input_lengths_t = at::tensor(input_lengths, targets.options().dtype(kLong));
tg_batch_offsets = tg_batch_offsets.cuda();
Tensor log_beta = at::empty_like(log_alpha, LEGACY_CONTIGUOUS_MEMORY_FORMAT);
log_beta.fill_(neginf);
Tensor grad = at::full_like(log_probs, neginf, LEGACY_CONTIGUOUS_MEMORY_FORMAT); // initialization for log(sum (alpha beta))
// As above, there may be better configurations to use.
constexpr int max_threads = std::is_same<scalar_t, float>::value ? 1024 : 896; // we need 72 or so 32 bit registers for double
int threads_target = max_threads;
while (threads_target / 2 >= 2*max_target_length+1) {
threads_target /= 2;
}
int threads_batch = std::min(max_threads / threads_target, (int) batch_size);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
{
dim3 block(threads_target, threads_batch);
dim3 grid((2*max_target_length+1 + threads_target-1)/threads_target, (batch_size+threads_batch-1)/threads_batch);
ctc_loss_backward_log_beta_gpu_kernel<scalar_t, target_t><<<grid, block, 0, stream>>>
(log_beta.data_ptr<scalar_t>(),
log_probs.data_ptr<scalar_t>(), input_lengths_t.data_ptr<int64_t>(), log_probs.size(0),
targets.data_ptr<target_t>(), target_lengths_t.data_ptr<int64_t>(), max_target_length,
log_probs.stride(0), log_probs.stride(1), log_probs.stride(2),
log_beta.stride(0), log_beta.stride(1), log_beta.stride(2),
tg_batch_offsets.data_ptr<int64_t>(), tg_target_stride,
batch_size, BLANK);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
// Very crude heuristic for what is a small problem., based on linearly regressing problem dimensions on
// the (capped) difference of timings.
// Note that for OK problems target length <= input length, so we
// only consider input length.
bool is_large = (2*log_probs.size(0)+(24*batch_size)/10+(2*num_labels)/10) > 450;
if (is_large) { // large alphabet, large batch
// this computes the probs, minuend in (16)
at::exp_out(grad, log_probs);
// now we compute the subtrahend for the blanks. It is a straightforward reduction because we know that
// blanks are in every other position.
// maybe we should kernelize this, too.
auto grad_blank = grad.narrow(2, BLANK, 1);
grad_blank -= (at::logsumexp(log_alpha.as_strided({batch_size, log_alpha.size(1), max_target_length+1},
{log_alpha.stride(0), log_alpha.stride(1), log_alpha.stride(2)*2})
+ log_beta.as_strided({batch_size, log_beta.size(1), max_target_length+1},
{log_beta.stride(0), log_beta.stride(1), log_beta.stride(2)*2}),
2, true)
.permute({1, 0, 2})
.add_(neg_log_likelihood.view({1, batch_size, 1}))
.sub_(log_probs.narrow(2, BLANK, 1))
.exp_()
);
// scale by output gradient (blanks and first summand of non-blanks)
grad *= grad_out.view({1, batch_size, 1});
if (zero_infinity) {
grad = at::where(neg_log_likelihood.view({1, batch_size, 1}) == Scalar(INFINITY), at::zeros({}, grad.options()), grad);
}
// For the non-blank characters, we use a kernel to compute the subtrahend.
// Again we might configure block and grid in a better way.
int threads_target = max_threads;
while (threads_target / 2 >= max_target_length && threads_target > 1) {
threads_target /= 2;
}
int threads_batch = std::min(max_threads / threads_target, (int) batch_size);
dim3 block(threads_target, threads_batch);
dim3 grid(
std::max<int>(
(max_target_length + threads_target - 1) / threads_target, 1),
(batch_size + threads_batch - 1) / threads_batch,
1);
ctc_loss_backward_collect_nonblank_gpu_kernel<scalar_t, target_t><<<grid, block, 0, stream>>>
(grad.data_ptr<scalar_t>(),
grad_out.data_ptr<scalar_t>(), grad_out.stride(0),
log_alpha.data_ptr<scalar_t>(), log_beta.data_ptr<scalar_t>(),
log_probs.data_ptr<scalar_t>(), input_lengths_t.data_ptr<int64_t>(), log_probs.size(0),
targets.data_ptr<target_t>(), target_lengths_t.data_ptr<int64_t>(), max_target_length,
neg_log_likelihood.data_ptr<scalar_t>(),
grad.stride(0), grad.stride(1), grad.stride(2),
log_probs.stride(0), log_probs.stride(1), log_probs.stride(2),
log_alpha.stride(0), log_alpha.stride(1), log_alpha.stride(2),
log_beta.stride(0), log_beta.stride(1), log_beta.stride(2),
tg_batch_offsets.data_ptr<int64_t>(), tg_target_stride,
batch_size, num_labels, BLANK, zero_infinity);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else { // small problem, use naive algorithm
// Still no block/grid configuration guru...
int threads_input = max_threads;
while (threads_input / 2 >= log_probs.size(0) && threads_input > 1) {
threads_input /= 2;
}
threads_batch = std::min(max_threads / threads_input, (int) batch_size);
dim3 block(threads_input, threads_batch);
dim3 grid((log_probs.size(0) + threads_input-1)/threads_input, (batch_size+threads_batch-1)/threads_batch);
ctc_loss_backward_collect_gpu_kernel<scalar_t, target_t><<<grid, block, 0, stream>>>
(grad.data_ptr<scalar_t>(),
grad_out.data_ptr<scalar_t>(), grad_out.stride(0),
log_alpha.data_ptr<scalar_t>(), log_beta.data_ptr<scalar_t>(),
log_probs.data_ptr<scalar_t>(), input_lengths_t.data_ptr<int64_t>(), log_probs.size(0),
targets.data_ptr<target_t>(), target_lengths_t.data_ptr<int64_t>(), max_target_length,
neg_log_likelihood.data_ptr<scalar_t>(),
grad.stride(0), grad.stride(1), grad.stride(2),
log_probs.stride(0), log_probs.stride(1), log_probs.stride(2),
log_alpha.stride(0), log_alpha.stride(1), log_alpha.stride(2),
log_beta.stride(0), log_beta.stride(1), log_beta.stride(2),
tg_batch_offsets.data_ptr<int64_t>(), tg_target_stride,
batch_size, num_labels, BLANK, zero_infinity);
C10_CUDA_KERNEL_LAUNCH_CHECK(); // catch launch errors
}
// zero those invalid graident elements due to padding
{
int threads_input = max_threads;
while (threads_input / 2 >= log_probs.size(0)) {
threads_input /= 2;
}
threads_batch = std::min(max_threads / threads_input, (int) batch_size);
dim3 block(threads_input, threads_batch);
dim3 grid(
(log_probs.size(0) + threads_input-1)/threads_input,
(batch_size+threads_batch-1)/threads_batch);
ctc_loss_zero_padded_gradients<scalar_t><<<grid, block, 0, stream>>>(
grad.data_ptr<scalar_t>(),
input_lengths_t.data_ptr<int64_t>(),
grad.stride(0),
grad.stride(1),
grad.stride(2),
grad.size(0),
grad.size(1),
grad.size(2)
);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return grad;
}
} // namespace
std::tuple<Tensor, Tensor> ctc_loss_gpu(const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t BLANK, bool zero_infinity) {
(void)zero_infinity; // only used for backward
return AT_DISPATCH_FLOATING_TYPES(log_probs.scalar_type(), "ctc_loss_cuda", [&] {
if (targets.scalar_type() == kLong) {
return ctc_loss_gpu_template<scalar_t, kLong>(log_probs, targets, input_lengths, target_lengths, BLANK);
} else {
return ctc_loss_gpu_template<scalar_t, kInt>(log_probs, targets, input_lengths, target_lengths, BLANK);
}
});
}
Tensor ctc_loss_backward_gpu(const Tensor& grad, const Tensor& log_probs, const Tensor& targets, IntArrayRef input_lengths, IntArrayRef target_lengths,
const Tensor& neg_log_likelihood, const Tensor& log_alpha, int64_t BLANK, bool zero_infinity) {
// See Note [Writing Nondeterministic Operations]
// Nondeterministic because of atomicAdd usage
globalContext().alertNotDeterministic("ctc_loss_backward_gpu");
return AT_DISPATCH_FLOATING_TYPES(log_probs.scalar_type(), "ctc_loss_backward_cuda", [&] {
if (targets.scalar_type() == kLong) {
return ctc_loss_backward_gpu_template<scalar_t, kLong>(grad, log_probs, targets, input_lengths, target_lengths, neg_log_likelihood, log_alpha, BLANK, zero_infinity);
} else {
return ctc_loss_backward_gpu_template<scalar_t, kInt>(grad, log_probs, targets, input_lengths, target_lengths, neg_log_likelihood, log_alpha, BLANK, zero_infinity);
}
});
}
} } // at::native