forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dropout.cu
357 lines (327 loc) · 13 KB
/
Dropout.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
#include <ATen/ATen.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <ATen/CUDAGeneratorImpl.h>
#include <ATen/cuda/detail/IndexUtils.cuh>
#include <ATen/cuda/detail/TensorInfo.cuh>
#include <ATen/cuda/CUDAGraphsUtils.cuh>
#include <c10/macros/Macros.h>
#include <curand_kernel.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/MemoryAccess.cuh>
#include <THC/THCGeneral.h>
namespace at{
namespace native{
namespace {
// philox generates 128 bits of randomness at a time. Kernel uses this explicitly by putting suitably transformed result into float4
// for all members of float4 to be consumed UNROLL has to be 4. Don't change!
// Note: VEC <= 4 (and in most real-world cases will be 4), so same logic applies.
const int UNROLL = 4;
template <
typename scalar_t,
typename accscalar_t,
typename IndexType,
int ADims,
int VEC>
#if __CUDA_ARCH__ >= 350
C10_LAUNCH_BOUNDS_2(256, 4)
#elif defined (__HIP_PLATFORM_HCC__)
C10_LAUNCH_BOUNDS_2(256, 4)
#endif
__global__ void
fused_dropout_kernel_vec(at::cuda::detail::TensorInfo<scalar_t, IndexType> a,
at::cuda::detail::TensorInfo<scalar_t, IndexType> b,
at::cuda::detail::TensorInfo<uint8_t, IndexType> c,
IndexType totalElements, accscalar_t p,
PhiloxCudaState philox_args) {
// make sure we don't break assumption that we can't have > 4 elements / thread
static_assert(VEC <= 4, "Value of VEC must be in [2, 4]");
using LoadT = memory::aligned_vector<scalar_t, VEC>;
using MaskLoadT = memory::aligned_vector<uint8_t, VEC>;
auto seeds = at::cuda::philox::unpack(philox_args);
IndexType idx = blockIdx.x * blockDim.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(std::get<0>(seeds),
idx,
std::get<1>(seeds),
&state);
accscalar_t pinv = accscalar_t(1)/p;
// Note: Vectorized loads means we'll stride each thread by an additional VEC factor, as we'll load VEC elements at a time
for (IndexType linearIndex = idx * VEC;
linearIndex < totalElements;
linearIndex += gridDim.x * blockDim.x * VEC) {
// local storage
scalar_t src[VEC];
// We'll use this to actually cause vectorized loads later
LoadT *value = reinterpret_cast<LoadT*>(&src);
//curand_uniform_double was pure evil anyway, not doing what it promises, and there's nothing for halfs, so generate float for everything
// Note: need a new set of random values per 4 elements -- we'll handle VEC elements in this thread, so need ceil(VEC / 4)
// sets of rand.
float4 rand = curand_uniform4(&state);
rand.x = rand.x < p;
rand.y = rand.y < p;
rand.z = rand.z < p;
rand.w = rand.w < p;
// Note: We explicitly check for is_contiguous() before launching the vectorized kernel
// and replace IndexToOffset call with linearIndex to allow vectorization of NHWC (or other)
// ordering.
// Single vectorized load
*value = *reinterpret_cast<LoadT*>(&a.data[linearIndex]);
scalar_t r[VEC];
uint8_t mask[VEC];
// Perform the actual computation
#pragma unroll
for (int ii = 0; ii < VEC; ii++) {
r[ii] = src[ii]*(&rand.x)[ii]*pinv;
mask[ii] = (uint8_t)(&rand.x)[ii];
}
// Vectorized writes for both mask & result
*(reinterpret_cast<LoadT*>(&b.data[linearIndex])) = *reinterpret_cast<LoadT*>(&r[0]);
*(reinterpret_cast<MaskLoadT*>(&c.data[linearIndex])) = *reinterpret_cast<MaskLoadT*>(&mask[0]);
__syncthreads();
}
}
template <
typename scalar_t,
typename accscalar_t,
typename IndexType,
int ADims,
int BDims=ADims>
#if __CUDA_ARCH__ >= 350
C10_LAUNCH_BOUNDS_2(256, 4)
#elif defined (__HIP_PLATFORM_HCC__)
C10_LAUNCH_BOUNDS_2(256, 4)
#endif
__global__ void
fused_dropout_kernel(cuda::detail::TensorInfo<scalar_t, IndexType> a,
cuda::detail::TensorInfo<scalar_t, IndexType> b,
cuda::detail::TensorInfo<uint8_t, IndexType> c,
IndexType totalElements, accscalar_t p,
PhiloxCudaState philox_args) {
auto seeds = at::cuda::philox::unpack(philox_args);
IndexType idx = blockIdx.x * blockDim.x + threadIdx.x;
curandStatePhilox4_32_10_t state;
curand_init(std::get<0>(seeds),
idx,
std::get<1>(seeds),
&state);
accscalar_t pinv = accscalar_t(1)/p;
IndexType rounded_size = ((totalElements - 1)/(blockDim.x * gridDim.x * UNROLL)+1) *
blockDim.x * gridDim.x * UNROLL;
for (IndexType linearIndex = idx;
linearIndex < rounded_size;
linearIndex += gridDim.x * blockDim.x*UNROLL) {
//curand_uniform_double was pure evil anyway, not doing what it promises, and there's nothing for halfs, so generate float for everything
float4 rand = curand_uniform4(&state);
scalar_t src[UNROLL];
rand.x = rand.x < p;
rand.y = rand.y < p;
rand.z = rand.z < p;
rand.w = rand.w < p;
for (int ii = 0; ii < UNROLL; ii++) {
IndexType li = linearIndex + blockDim.x * gridDim.x * ii;
if (li < totalElements) {
// Convert `linearIndex` into an offset of `a`
const IndexType aOffset =
cuda::detail::IndexToOffset<scalar_t, IndexType, ADims>::get(li, a);
src[ii] = a.data[aOffset];
}
}
for (int ii = 0; ii < UNROLL; ii++) {
IndexType li = linearIndex + blockDim.x * gridDim.x * ii;
if (li < totalElements) {
// Convert `linearIndex` into an offset of `b`
const IndexType bOffset =
cuda::detail::IndexToOffset<scalar_t, IndexType, BDims>::get(li, b);
b.data[bOffset] = src[ii]*(&rand.x)[ii]*pinv;
c.data[bOffset] = (uint8_t)(&rand.x)[ii];
}
}
__syncthreads();
}
}
template<typename scalar_t, typename accscalar_t>
void masked_scale_kernel(at::Tensor& ret, const at::Tensor src, const at::Tensor mask, accscalar_t scale){
auto iter = at::TensorIteratorConfig()
.check_all_same_dtype(false)
.add_output(ret)
.add_input(src)
.add_input(mask)
.build();
at::native::gpu_kernel(
iter,
[=]GPU_LAMBDA(const scalar_t src_val, const uint8_t mask_val) -> scalar_t {
return (float)mask_val * src_val * scale;
});
}
template <typename scalar_t>
int get_vector_size(at::Tensor self, at::Tensor ret, at::Tensor mask) {
int vec_size = 4;
// get the vector size
if (!self.is_non_overlapping_and_dense() || !ret.is_non_overlapping_and_dense() || !mask.is_non_overlapping_and_dense()) {
vec_size = 1;
} else {
vec_size = memory::can_vectorize_up_to<scalar_t>((char*)self.data_ptr());
}
// check that we'd have no remainders - prefer a smaller vector size with no remainders over a larger vector and remainder.
bool can_vectorize = true;
do {
can_vectorize = self.numel() % vec_size == 0 && ret.numel() % vec_size == 0 && mask.numel() % vec_size == 0;
if (!can_vectorize) vec_size /= 2;
} while (vec_size > 1 && !can_vectorize);
return can_vectorize ? vec_size : 1;
}
template <typename index_type>
inline void launcher(
const Tensor& self,
Tensor& ret,
Tensor& mask,
double p,
const int64_t nelem,
const PhiloxCudaState rng_engine_inputs,
dim3 grid,
dim3 dim_block) {
AT_DISPATCH_FLOATING_TYPES_AND2(
at::ScalarType::Half,
at::ScalarType::BFloat16,
self.scalar_type(),
"fused_dropout",
[&] {
using accscalar_t = acc_type<scalar_t, true>;
accscalar_t pa = (accscalar_t)(p);
auto self_info =
cuda::detail::getTensorInfo<scalar_t, index_type>(self);
auto ret_info =
cuda::detail::getTensorInfo<scalar_t, index_type>(ret);
auto mask_info =
cuda::detail::getTensorInfo<uint8_t, index_type>(mask);
self_info.collapseDims();
ret_info.collapseDims();
mask_info.collapseDims(); // ret and mask are collapsed to 1d
// contiguous tensor
int vec_size = get_vector_size<scalar_t>(self, ret, mask);
if (vec_size > 1) {
switch (vec_size) {
case 4:
fused_dropout_kernel_vec<
scalar_t,
accscalar_t,
index_type,
1,
4>
<<<grid, dim_block, 0, at::cuda::getCurrentCUDAStream()>>>(
self_info,
ret_info,
mask_info,
nelem,
pa,
rng_engine_inputs);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
case 2:
fused_dropout_kernel_vec<
scalar_t,
accscalar_t,
index_type,
1,
2>
<<<grid, dim_block, 0, at::cuda::getCurrentCUDAStream()>>>(
self_info,
ret_info,
mask_info,
nelem,
pa,
rng_engine_inputs);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
}
} else {
switch (self_info.dims) {
case 1:
fused_dropout_kernel<scalar_t, accscalar_t, index_type, 1>
<<<grid, dim_block, 0, at::cuda::getCurrentCUDAStream()>>>(
self_info,
ret_info,
mask_info,
nelem,
pa,
rng_engine_inputs);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
default:
if (!self.is_contiguous() && ret.is_contiguous() &&
mask.is_contiguous()) {
fused_dropout_kernel<scalar_t, accscalar_t, index_type, -1, 1>
<<<grid,
dim_block,
0,
at::cuda::getCurrentCUDAStream()>>>(
self_info,
ret_info,
mask_info,
nelem,
pa,
rng_engine_inputs);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
fused_dropout_kernel<scalar_t, accscalar_t, index_type, -1>
<<<grid,
dim_block,
0,
at::cuda::getCurrentCUDAStream()>>>(
self_info,
ret_info,
mask_info,
nelem,
pa,
rng_engine_inputs);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
}
}
});
}
} //anonymous namespace
std::tuple<Tensor,Tensor>
fused_dropout_cuda(const Tensor& self, double p, c10::optional<Generator> gen_){
auto gen = get_generator_or_default<CUDAGeneratorImpl>(gen_, cuda::detail::getDefaultCUDAGenerator());
Tensor ret = at::empty_like(self);
Tensor mask = at::empty_like(self, self.options().dtype(kByte));
const int64_t nelem = self.numel();
//empty tensors should not get here, but just in case, avoid FPE
if (nelem==0) return std::tuple<Tensor,Tensor>(self, mask);
const int64_t block_size = 256;
unsigned int blocks_per_sm = at::cuda::getCurrentDeviceProperties()->maxThreadsPerMultiProcessor/block_size;
dim3 dim_block(block_size);
dim3 grid((nelem + block_size -1)/block_size);
grid.x = std::min((unsigned int)at::cuda::getCurrentDeviceProperties()->multiProcessorCount * blocks_per_sm, grid.x);
//number of times random will be generated per thread, to offset philox counter in thc random state
int64_t counter_offset = ((nelem - 1)/(block_size*grid.x*UNROLL)+1)*UNROLL;
PhiloxCudaState rng_engine_inputs;
{
// See Note [Acquire lock when using random generators]
std::lock_guard<std::mutex> lock(gen->mutex_);
rng_engine_inputs = gen->philox_cuda_state(counter_offset);
}
if (cuda::detail::canUse32BitIndexMath(self)){
launcher<unsigned int>(
self, ret, mask, p, nelem, rng_engine_inputs, grid, dim_block);
} else {
launcher<uint64_t>(
self, ret, mask, p, nelem, rng_engine_inputs, grid, dim_block);
}
return std::tuple<Tensor,Tensor>(ret, mask);
}
Tensor masked_scale_cuda(const Tensor& self, const Tensor& mask, double scale){
Tensor ret = at::empty_like(self, self.suggest_memory_format());
TORCH_CHECK(mask.scalar_type() == at::ScalarType::Byte, "mask should be torch.uint8 dtype");
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, ret.scalar_type(), "masked_scale", [&] {
using accscalar_t = acc_type<scalar_t, true>;
accscalar_t pa = (accscalar_t)(scale);
masked_scale_kernel<scalar_t>(ret, self, mask, pa);
});
return ret;
}
}
}